はじめてのランダム行列講座:物理学者、工学者、データサイエンティストのために<br>A First Course in Random Matrix Theory : for Physicists, Engineers and Data Scientists

個数:

はじめてのランダム行列講座:物理学者、工学者、データサイエンティストのために
A First Course in Random Matrix Theory : for Physicists, Engineers and Data Scientists

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 370 p.
  • 言語 ENG
  • 商品コード 9781108488082
  • DDC分類 512.9434

Full Description

The real world is perceived and broken down as data, models and algorithms in the eyes of physicists and engineers. Data is noisy by nature and classical statistical tools have so far been successful in dealing with relatively smaller levels of randomness. The recent emergence of Big Data and the required computing power to analyse them have rendered classical tools outdated and insufficient. Tools such as random matrix theory and the study of large sample covariance matrices can efficiently process these big data sets and help make sense of modern, deep learning algorithms. Presenting an introductory calculus course for random matrices, the book focusses on modern concepts in matrix theory, generalising the standard concept of probabilistic independence to non-commuting random variables. Concretely worked out examples and applications to financial engineering and portfolio construction make this unique book an essential tool for physicists, engineers, data analysts, and economists.

Contents

Preface; Part I. Classical Random Matrix Theory: 1. Deterministic Matrices; 2. Wigner Ensemble and Semi-circle Law; 3. More on Gaussian Matrices; 4. Wishart Ensemble and Marcenko-Pastur Distribution; 5. Joint Distribution of Eigenvalues; 7. The Jacobi Ensemble; Part II. Sums and Products of Random Matrices: 8. Addition of Random Variables and Brownian Motion; 9. Dyson Brownian Motion; 10. Addition of Large Random Matrices; 11. Free Probabilities; 12. Free Random Matrices; 13. The Replica Method; 14. Edge Eigenvalues and Outliers; Part III. Applications: 15. Addition and Multiplication: Recipes and Examples; 16. Products of Many Random Matrices; 17. Sample Covariance Matrices; 18. Bayesian Estimation; 19. Eigenvector Overlaps and Rotationally Invariant Estimators; 20. Applications to Finance; Appendix A. Appendices: Mathematical Tools; List of Symbols; Index.

最近チェックした商品