圏論からホモトピー論へ<br>From Categories to Homotopy Theory (Cambridge Studies in Advanced Mathematics)

個数:

圏論からホモトピー論へ
From Categories to Homotopy Theory (Cambridge Studies in Advanced Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 400 p.
  • 言語 ENG
  • 商品コード 9781108479622
  • DDC分類 512.62

Full Description

Category theory provides structure for the mathematical world and is seen everywhere in modern mathematics. With this book, the author bridges the gap between pure category theory and its numerous applications in homotopy theory, providing the necessary background information to make the subject accessible to graduate students or researchers with a background in algebraic topology and algebra. The reader is first introduced to category theory, starting with basic definitions and concepts before progressing to more advanced themes. Concrete examples and exercises illustrate the topics, ranging from colimits to constructions such as the Day convolution product. Part II covers important applications of category theory, giving a thorough introduction to simplicial objects including an account of quasi-categories and Segal sets. Diagram categories play a central role throughout the book, giving rise to models of iterated loop spaces, and feature prominently in functor homology and homology of small categories.

Contents

Introduction; Part I. Category Theory: 1. Basic notions in category theory; 2. Natural transformations and the Yoneda lemma; 3. Colimits and limits; 4. Kan extensions; 5. Comma categories and the Grothendieck construction; 6. Monads and comonads; 7. Abelian categories; 8. Symmetric monoidal categories; 9. Enriched categories; Part II. From Categories to Homotopy Theory: 10. Simplicial objects; 11. The nerve and the classifying space of a small category; 12. A brief introduction to operads; 13. Classifying spaces of symmetric monoidal categories; 14. Approaches to iterated loop spaces via diagram categories; 15. Functor homology; 16. Homology and cohomology of small categories; References; Index.

最近チェックした商品