データサイエンスのための高次元確率入門<br>High-Dimensional Probability : An Introduction with Applications in Data Science (Cambridge Series in Statistical and Probabilistic Mathematics)

個数:

データサイエンスのための高次元確率入門
High-Dimensional Probability : An Introduction with Applications in Data Science (Cambridge Series in Statistical and Probabilistic Mathematics)

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 296 p.
  • 言語 ENG
  • 商品コード 9781108415194
  • DDC分類 519.2

Full Description

High-dimensional probability offers insight into the behavior of random vectors, random matrices, random subspaces, and objects used to quantify uncertainty in high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends itself to applications in mathematics, statistics, theoretical computer science, signal processing, optimization, and more. It is the first to integrate theory, key tools, and modern applications of high-dimensional probability. Concentration inequalities form the core, and it covers both classical results such as Hoeffding's and Chernoff's inequalities and modern developments such as the matrix Bernstein's inequality. It then introduces the powerful methods based on stochastic processes, including such tools as Slepian's, Sudakov's, and Dudley's inequalities, as well as generic chaining and bounds based on VC dimension. A broad range of illustrations is embedded throughout, including classical and modern results for covariance estimation, clustering, networks, semidefinite programming, coding, dimension reduction, matrix completion, machine learning, compressed sensing, and sparse regression.

Contents

Preface; Appetizer: using probability to cover a geometric set; 1. Preliminaries on random variables; 2. Concentration of sums of independent random variables; 3. Random vectors in high dimensions; 4. Random matrices; 5. Concentration without independence; 6. Quadratic forms, symmetrization and contraction; 7. Random processes; 8. Chaining; 9. Deviations of random matrices and geometric consequences; 10. Sparse recovery; 11. Dvoretzky-Milman's theorem; Bibliography; Index.

最近チェックした商品