Polynomials and the Mod 2 Steenrod Algebra (2-Volume Set) : The Peterson Hit Problem / Representations of Gl(n,f2) (London Mathematical Society Lectur

Polynomials and the Mod 2 Steenrod Algebra (2-Volume Set) : The Peterson Hit Problem / Representations of Gl(n,f2) (London Mathematical Society Lectur

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Paperback:紙装版/ペーパーバック版
  • 言語 ENG
  • 商品コード 9781108414067
  • DDC分類 514

Full Description


This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's 'hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n,F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

Contents

Volume 1Steenrod squares; 3. The Steenrod algebra A2; 4. Products and conjugation in A2; 5. Combinatorial structures; 6. The cohit module Q(n); 7. Bounds for dim Qd(n); 8. Special blocks and a basis for Q(3); 9. The dual of the hit problem; 10. K(3) and Q(3) as F2GL(3)-modules; 11. The dual of the Steenrod algebra; 12. Further structure of A2; 13. Stripping and nilpotence in A2; 14. The 2-dominance theorem; 15. Invariants and the hit problem; Bibliography; Index of Notation for Volume 1; Index for Volume 1; Index of Notation for Volume 2; Index for Volume 2; Volume 2: Preface; 16. The action of GL(n) on flags; 17. Irreducible F2GL(n)-modules; 18. Idempotents and characters; 19. Splitting P(n) as an A2-module; 20. The algebraic group G(n); 21. Endomorphisms of P(n) over A2; 22. The Steinberg summands of P(n); 23. The d-spike module J(n); 24. Partial flags and J(n); 25. The symmetric hit problem; 26. The dual of the symmetric hit problem; 27. The cyclic splitting of P(n); 28. The cyclic splitting of DP(n); 29. The 4-variable hit problem, I; 30. The 4-variable hit problem, II; Bibliography; Index of Notation for Volume 2; Index for Volume 2; Index of Notation for Volume 1; Index for Volume 1.

最近チェックした商品