- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
基本説明
Josiah Willard Gibbs (1839-1903) was the greatest American mathematician and physicist of the nineteenth century. He played a key role in the development of vector analysis (his book on this topic is also reissued in this series), but his deepest work was in the development of thermodynamics and statistical physics. This book, Elementary Principles in Statistical Mechanics, first published in 1902, gives his mature vision of these subjects. Mathematicians, physicists and engineers familiar with such things as Gibbs entropy, Gibbs inequality and the Gibbs distribution will find them here discussed in Gibbs' own words.
Full Description
Josiah Willard Gibbs (1839-1903) was the greatest American mathematician and physicist of the nineteenth century. He played a key role in the development of vector analysis (his book on this topic is also reissued in this series), but his deepest work was in the development of thermodynamics and statistical physics. This book, Elementary Principles in Statistical Mechanics, first published in 1902, gives his mature vision of these subjects. Mathematicians, physicists and engineers familiar with such things as Gibbs entropy, Gibbs inequality and the Gibbs distribution will find them here discussed in Gibbs' own words.
Contents
Preface; 1. General notions. The principle of conservation of extension-in-phase; 2. Application of the principle of conservation of extension-in-phase to the theory of errors; 3. Application of the principle of conservation of extension-in-phase to the integration of the differential equations of motion; 4. On the distribution-in-phase called canonical, in which the index of probability is a linear function of the energy; 5. Average values in a canonical ensemble of systems; 6. Extension-in-configuration and extension-in-velocity; 7. Farther discussion of averages in a canonical ensemble of systems; 8. On certain important functions of the energies of a system; 9. The function Φ and the canonical distribution; 10. On a distribution in phase called microcanonical in which all the systems have the same energy; 11. Maximum and minimum properties of various distributions in phase; 12. On the motion of systems and ensembles of systems through long periods of time; 13. Effect of various processes on an ensemble of systems; 14. Discussion of thermodynamic analogies; 15. Systems composed of molecules.