The Algebra of Invariants (Cambridge Library Collection - Mathematics)

個数:

The Algebra of Invariants (Cambridge Library Collection - Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 398 p.
  • 言語 ENG
  • 商品コード 9781108013093
  • DDC分類 512.5

Full Description

Invariant theory is a subject within abstract algebra that studies polynomial functions which do not change under transformations from a linear group. John Hilton Grace (1873-1958) was a research mathematician specialising in algebra and geometry. He was elected a Fellow of the Royal Society in 1908. His co-author Dr Alfred Young (1873-1940) was also a research mathematician before being ordained in 1908; in 1934 he too was elected a Fellow of the Royal Society. Abstract algebra was one of the new fields of study within mathematics which developed out of geometry during the nineteenth century. It became a major area of research in the late nineteenth and early twentieth centuries. First published in 1903, this book introduced the work on invariant theory of the German mathematicians Alfred Clebsch and Paul Gordan into British mathematics. It was considered the standard work on the subject.

Contents

Preface; 1. Introduction; 2. The fundamental theorem; 3. Transvectants; 4. Transvectants (continued); 5. Elementary complete systems; 6. Gordan's theorem; 7. The quintic; 8. Simultaneous systems; 9. Hilbert's theorem; 10. Geometry; 11. Apolarity and rational curves; 12. Ternary forms; 13. Ternary forms (continued); 14. Apolarity (continued); 15. Types of covariants; 16. General theorems on quantics; Appendices; Index.

最近チェックした商品