最適輸送:理論と応用<br>Optimal Transport : Theory and Applications (London Mathematical Society Lecture Note Series)

個数:
電子版価格
¥7,815
  • 電子版あり

最適輸送:理論と応用
Optimal Transport : Theory and Applications (London Mathematical Society Lecture Note Series)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 316 p.
  • 言語 ENG
  • 商品コード 9781107689497
  • DDC分類 519

Full Description

The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.

Contents

Part I. Short Courses: 1. Introduction to optimal transport theory Filippo Santambroggio; 2. Models and applications of optimal transport in economics, traffic and urban planning Filippo Santambroggio; 3. Logarithmic Sobolev inequality for diffusions and curvature-dimension condition Ivan Gentil; 4. Lecture notes on variational methods for incompressible Euler equations Luigi Ambrosio and Alessio Figalli; 5. Ricci flow: the foundations via optimal transportation Peter Topping; 6. Lecture notes on gradient flows and optimal transport Sara Danieri and Guiseppe Savare; 7. Ricci curvature, entropy, and optimal transport Shin-Ichi Ohta; Part II. Survey and Research Papers: 8. Computing the time-continuous optimal mass transport without Lagrangian techniques Olivier Besson, Martine Picq and Jérome Poussin; 9. On the duality theory for the Monge-Kantorovich transport problem Mathias Beiglbock, Chrsitian Léonard and Walter Schachermayer; 10. Optimal coupling for mean field limits François Bolley; 11. Functional inequalities via Lyapunov conditions Patrick Cattiaux and Arnaud Guillin; 12. Size of the medial axis and stability of Federer's curvature measures Quentin Mérigot.

最近チェックした商品