数学的思考の発達<br>How Humans Learn to Think Mathematically : Exploring the Three Worlds of Mathematics (Learning in Doing: Social, Cognitive and Computational Perspectives)

個数:

数学的思考の発達
How Humans Learn to Think Mathematically : Exploring the Three Worlds of Mathematics (Learning in Doing: Social, Cognitive and Computational Perspectives)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 484 p.
  • 言語 ENG
  • 商品コード 9781107668546
  • DDC分類 510.1

Full Description

How Humans Learn to Think Mathematically describes the development of mathematical thinking from the young child to the sophisticated adult. Professor David Tall reveals the reasons why mathematical concepts that make sense in one context may become problematic in another. For example, a child's experience of whole number arithmetic successively affects subsequent understanding of fractions, negative numbers, algebra, and the introduction of definitions and proof. Tall's explanations for these developments are accessible to a general audience while encouraging specialists to relate their areas of expertise to the full range of mathematical thinking. The book offers a comprehensive framework for understanding mathematical growth, from practical beginnings through theoretical developments, to the continuing evolution of mathematical thinking at the highest level.

Contents

Part I. Prelude: 1. About this book; Part II. School Mathematics and its Consequences: 2. The foundations of mathematical thinking; 3. Compression, connection and blending of mathematical ideas; 4. Set-befores, met-befores and long-term learning; 5. Mathematics and the emotions; 6. The three worlds of mathematics; 7. Journeys through embodiment and symbolism; 8. Problem-solving and proof; Part III. Interlude: 9. The historical evolution of mathematics; Part IV. University Mathematics and Beyond: 10. The transition to formal knowledge; 11. Blending knowledge structures in calculus; 12. Expert thinking and structure theorems; 13. Contemplating the infinitely large and the infinitely small; 14. Expanding frontiers through mathematical research; 15. Reflections; Appendix: where the ideas came from.

最近チェックした商品