Theory of Differential Equations : Ordinary Equations, Not Linear (Theory of Differential Equations 6 Volume Set)

個数:

Theory of Differential Equations : Ordinary Equations, Not Linear (Theory of Differential Equations 6 Volume Set)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 358 p.
  • 言語 ENG
  • 商品コード 9781107640252
  • DDC分類 515.352

Full Description

Andrew Russell Forsyth (1858-1942) was an influential Scottish mathematician notable for incorporating the advances of Continental mathematics within the British tradition. Originally published in 1900, this book constitutes the second of six volumes in Forsyth's Theory of Differential Equations series, concentrating specifically on ordinary equations which are not linear. The text contains detailed information on the development of this area and substantial contributions made to it. All sources are quoted in their proper connection and a few fresh investigations are added. Examples are given, where necessary, in order to provide illustrations of various methods. This book will be of value to anyone with an interest in differential equations and the history of mathematics.

Contents

1. Introductory; 2. Cauchy's theorem on the existence of regular integrals of a system of equations; 3. Classes of non-ordinary points connected with the form of the equation of the first order and first degree in the derivative; 4. Influence, upon the integral, of an accidental singularity of the first kind possessed by the equation; 5. Reduction of the differential equation to final typical forms, valid in the vicinity of an accidental singularity of the second kind; 6. The character of the integrals possessed by the respective reduced forms of the original equation in the vicinity of the accidental singularity of the second kind; 7. Effect, upon the integral, of essential singularities of the equation; 8. Branch-points of an equation of the first order and any degree, as determined by the equation: singular and particular solutions; 9. Differential equations of the first order having their integrals free from parametric branch-points; 10. Equations of first order with uniform integrals, and with algebraical integrals.

最近チェックした商品