Elements of Distribution Theory (Cambridge Series in Statistical and Probabilistic Mathematics)

個数:

Elements of Distribution Theory (Cambridge Series in Statistical and Probabilistic Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 528 p./サイズ 354 exercises
  • 言語 ENG
  • 商品コード 9781107630734
  • DDC分類 515

Full Description

This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.

Contents

1. Properties of probability distributions; 2. Conditional distributions and expectation; 3. Characteristic functions; 4. Moments and cumulants; 5. Parametric families of distributions; 6. Stochastic processes; 7. Distribution theory for functions of random variables; 8. Normal distribution theory; 9. Approximation of integrals; 10. Orthogonal polynomials; 11. Approximation of probability distributions; 12. Central limit theorems; 13. Approximation to the distributions of more general statistics; 14. Higher-order asymptotic approximations.

最近チェックした商品