Markov Processes, Gaussian Processes, and Local Times (Cambridge Studies in Advanced Mathematics)

個数:

Markov Processes, Gaussian Processes, and Local Times (Cambridge Studies in Advanced Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 632 p.
  • 言語 ENG
  • 商品コード 9781107403758
  • DDC分類 519.233

Full Description

This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.

Contents

1. Introduction; 2. Brownian motion and Ray-Knight theorems; 3. Markov processes and local times; 4. Constructing Markov processes; 5. Basic properties of Gaussian processes; 6. Continuity and boundedness; 7. Moduli of continuity; 8. Isomorphism theorems; 9. Sample path properties of local times; 10. p-Variation; 11. Most visited site; 12. Local times of diffusions; 13. Associated Gaussian processes; Appendices: A. Kolmogorov's theorem for path continuity; B. Bessel processes; C. Analytic sets and the projection theorem; D. Hille-Yosida theorem; E. Stone-Weierstrass theorems; F. Independent random variables; G. Regularly varying functions; H. Some useful inequalities; I. Some linear algebra; References; Index.

最近チェックした商品