Metamathematics of First-Order Arithmetic (Perspectives in Logic)

個数:

Metamathematics of First-Order Arithmetic (Perspectives in Logic)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 474 p.
  • 言語 ENG
  • 商品コード 9781107168411
  • DDC分類 510.1

Full Description

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the third publication in the Perspectives in Logic series, is a much-needed monograph on the metamathematics of first-order arithmetic. The authors pay particular attention to subsystems (fragments) of Peano arithmetic and give the reader a deeper understanding of the role of the axiom schema of induction and of the phenomenon of incompleteness. The reader is only assumed to know the basics of mathematical logic, which are reviewed in the preliminaries. Part I develops parts of mathematics and logic in various fragments. Part II is devoted to incompleteness. Finally, Part III studies systems that have the induction schema restricted to bounded formulas (bounded arithmetic).

Contents

Introduction; Preliminaries; Part I: 1. Arithmetic as number theory, set theory and logic; 2. Fragments and combinatorics; Part II: 3. Self-reference; 4. Models of fragments of arithmetic; Part III: 5. Bounded arithmetic; Bibliographical remarks and further reading; Bibliography; Index of terms; Index of symbols.

最近チェックした商品