Factorization Algebras in Quantum Field Theory: Volume 2 (New Mathematical Monographs)

個数:

Factorization Algebras in Quantum Field Theory: Volume 2 (New Mathematical Monographs)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 380 p.
  • 言語 ENG
  • 商品コード 9781107163157
  • DDC分類 512.923

Full Description

Factorization algebras are local-to-global objects that play a role in classical and quantum field theory that is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this second volume, the authors show how factorization algebras arise from interacting field theories, both classical and quantum, and how they encode essential information such as operator product expansions, Noether currents, and anomalies. Along with a systematic reworking of the Batalin-Vilkovisky formalism via derived geometry and factorization algebras, this book offers concrete examples from physics, ranging from angular momentum and Virasoro symmetries to a five-dimensional gauge theory.

Contents

1. Introduction and overview; Part I. Classical Field Theory: 2. Introduction to classical field theory; 3. Elliptic moduli problems; 4. The classical Batalin-Vilkovisky formalism; 5. The observables of a classical field theory; Part II. Quantum Field Theory: 6. Introduction to quantum field theory; 7. Effective field theories and Batalin-Vilkovisky quantization; 8. The observables of a quantum field theory; 9. Further aspects of quantum observables; 10. Operator product expansions, with examples; Part III. A Factorization Enhancement of Noether's Theorem: 11. Introduction to Noether's theorems; 12. Noether's theorem in classical field theory; 13. Noether's theorem in quantum field theory; 14. Examples of the Noether theorems; Appendix A. Background; Appendix B. Functions on spaces of sections; Appendix C. A formal Darboux lemma; References; Index.

最近チェックした商品