宇宙物理学データのベイズ統計学的手法<br>Bayesian Models for Astrophysical Data : Using R, JAGS, Python, and Stan

個数:
電子版価格
¥11,110
  • 電子版あり

宇宙物理学データのベイズ統計学的手法
Bayesian Models for Astrophysical Data : Using R, JAGS, Python, and Stan

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 408 p.
  • 言語 ENG
  • 商品コード 9781107133082
  • DDC分類 519.542

Full Description

This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Contents

Preface; 1. Astrostatistics; 2. Prerequisites; 3. Frequentist vs Bayesian methods; 4. Normal linear models; 5. GLM part I - continuous and binomial models; 6. GLM part II - count models; 7. GLM part III - zero-inflated and hurdle models; 8. Hierarchical GLMMs; 9. Model selection; 10. Astronomical applications; 11. The future of astrostatistics; Appendix A. Bayesian modeling using INLA; Bibliography; Index.

最近チェックした商品