Type Theory and Formal Proof : An Introduction

個数:
電子版価格
¥10,069
  • 電子版あり

Type Theory and Formal Proof : An Introduction

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 466 p.
  • 言語 ENG
  • 商品コード 9781107036505
  • DDC分類 551.3

Full Description

Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.

Contents

Foreword; Preface; Acknowledgements; Greek alphabet; 1. Untyped lambda calculus; 2. Simply typed lambda calculus; 3. Second order typed lambda calculus; 4. Types dependent on types; 5. Types dependent on terms; 6. The Calculus of Constructions; 7. The encoding of logical notions in λC; 8. Definitions; 9. Extension of λC with definitions; 10. Rules and properties of λD; 11. Flag-style natural deduction in λD; 12. Mathematics in λD: a first attempt; 13. Sets and subsets; 14. Numbers and arithmetic in λD; 15. An elaborated example; 16. Further perspectives; Appendix A. Logic in λD; Appendix B. Arithmetical axioms, definitions and lemmas; Appendix C. Two complete example proofs in λD; Appendix D. Derivation rules for λD; References; Index of names; Index of technical notions; Index of defined constants; Index of subjects.

最近チェックした商品