高等数学入門(英訳・全2巻)<br>An Introduction to Higher Mathematics 2 Volume Set (The Cambridge China Library)

個数:

高等数学入門(英訳・全2巻)
An Introduction to Higher Mathematics 2 Volume Set (The Cambridge China Library)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • ページ数 900 p.
  • 言語 ENG
  • 商品コード 9781107020016
  • DDC分類 510

基本説明

The self-taught mathematician Hua Loo-Keng (1910-1985) has been credited with inspiring generations of mathematicians, while his papers on number theory are regarded as some of the most significant contributions made to the subject during the first half of the twentieth century. This book is based on the lectures given by Hua at the University of Science and Technology of China from 1958, and contains both pure and applied mathematics, emphasising the interdependent relationships between different branches of the discipline.

Full Description

The self-taught mathematician Hua Loo-Keng (1910-1985) has been credited with inspiring generations of mathematicians, while his papers on number theory are regarded as some of the most significant contributions made to the subject during the first half of the twentieth century. An Introduction to Higher Mathematics is based on the lectures given by Hua at the University of Science and Technology of China from 1958. The course reflects Hua's instinctive technique, using the simplest tools to tackle even the most difficult problems, and contains both pure and applied mathematics, emphasising the interdependent relationships between different branches of the discipline. With hundreds of diagrams, examples and exercises, this is a wide-ranging reference text for university mathematics and a testament to the teaching of one of the most eminent mathematicians of his generation.

Contents

Volume I: 1. Real and complex numbers; 2. Vector algebra; 3. Functions and graphs; 4. Limits; 5. The differential calculus; 6. Applications of the derivative; 7. Taylor expansions; 8. Approximate solutions to equations; 9. Indefinite integrals; 10. Definite integrals; 11. Applications of integral calculus; 12. Functions of several variables; 13. Sequences, series and integrals with variables; 14. Differential properties of curves; 15. Multiple integral; 16. Curvilinear integral and surface integral; 17. Scalar field and vector field; 18. Differential properties of curved surfaces; 19. Fourier series; 20. System of ordinary differential equations. Volume II: 1. Geometry of the complex plane; 2. Non-Euclidean geometry; 3. Definitions and examples of analytic and harmonic functions; 4. Harmonic functions; 5. Some basic concepts in point set theory and topology; 6. Analytic functions; 7. Residues and their application to definite integral; 8. Maximum modulus principle and the family of functions; 9. Entire function and meromorphic function; 10. Conformal transformation; 11. Summation; 12. Harmonic functions under various boundary conditions; 13. Weierstrass' elliptic function theory; 14. Jacobi's elliptic functions; 15. Systems of linear equations and determinants (review outline); 16. Equivalence of matrices; 17. Functions, sequences and series of square matrices; 18. Difference equations with constant coefficients and ordinary differential equations; 19. Asymptotic property of solutions; 20. Quadratic form; 21. Orthogonal groups and pair of quadratic forms; 22. Volumes; 23. Non-negative square matrices. Volume III: 1. The geometry of the complex plane; 2. Non-Euclidean geometry; 3. Definitions and examples of analytic functions and harmonic functions; 4. Harmonic functions; 5. Point set theory and preparations for topology; 6. Analytic functions; 7. The residue and its application to evaluation of definite integrals; 8. Maximum modulus theorem and families of functions; 9. Integral functions and metamorphic functions; 10. Conformal transformations; 11. Summability methods; 12. Harmonic functions satisfying various types of boundary conditions; 13. Weierstrass elliptic function theory; 14. Jacobian elliptic function theory. Volume IV: 1. Linear systems and determinants (review); 2. Equivalence of matrices; 3. Functions, sequences and series of square matrices; 4. Difference and differential equations with constant coefficients; 5. Asymptotic properties of solutions; 6. Quadratic forms; 7. Orthogonal groups corresponding to quadratic forms; 8. Volumes; 9. Non-negative square matrices.

最近チェックした商品