Normal Approximations with Malliavin Calculus : From Stein's Method to Universality (Cambridge Tracts in Mathematics)

個数:

Normal Approximations with Malliavin Calculus : From Stein's Method to Universality (Cambridge Tracts in Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 254 p./サイズ 70 exercise
  • 言語 ENG
  • 商品コード 9781107017771
  • DDC分類 519.23

Full Description

Stein's method is a collection of probabilistic techniques that allow one to assess the distance between two probability distributions by means of differential operators. In 2007, the authors discovered that one can combine Stein's method with the powerful Malliavin calculus of variations, in order to deduce quantitative central limit theorems involving functionals of general Gaussian fields. This book provides an ideal introduction both to Stein's method and Malliavin calculus, from the standpoint of normal approximations on a Gaussian space. Many recent developments and applications are studied in detail, for instance: fourth moment theorems on the Wiener chaos, density estimates, Breuer-Major theorems for fractional processes, recursive cumulant computations, optimal rates and universality results for homogeneous sums. Largely self-contained, the book is perfect for self-study. It will appeal to researchers and graduate students in probability and statistics, especially those who wish to understand the connections between Stein's method and Malliavin calculus.

Contents

Preface; Introduction; 1. Malliavin operators in the one-dimensional case; 2. Malliavin operators and isonormal Gaussian processes; 3. Stein's method for one-dimensional normal approximations; 4. Multidimensional Stein's method; 5. Stein meets Malliavin: univariate normal approximations; 6. Multivariate normal approximations; 7. Exploring the Breuer-Major Theorem; 8. Computation of cumulants; 9. Exact asymptotics and optimal rates; 10. Density estimates; 11. Homogeneous sums and universality; Appendix 1. Gaussian elements, cumulants and Edgeworth expansions; Appendix 2. Hilbert space notation; Appendix 3. Distances between probability measures; Appendix 4. Fractional Brownian motion; Appendix 5. Some results from functional analysis; References; Index.

最近チェックした商品