Filtering Complex Turbulent Systems

個数:

Filtering Complex Turbulent Systems

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p./サイズ 145 illus.
  • 言語 ENG
  • 商品コード 9781107016668
  • DDC分類 660.2842450151

Full Description

Many natural phenomena ranging from climate through to biology are described by complex dynamical systems. Getting information about these phenomena involves filtering noisy data and prediction based on incomplete information (complicated by the sheer number of parameters involved), and often we need to do this in real time, for example for weather forecasting or pollution control. All this is further complicated by the sheer number of parameters involved leading to further problems associated with the 'curse of dimensionality' and the 'curse of small ensemble size'. The authors develop, for the first time in book form, a systematic perspective on all these issues from the standpoint of applied mathematics. The book contains enough background material from filtering, turbulence theory and numerical analysis to make the presentation self-contained and suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required to enlighten observations and models.

Contents

Preface; 1. Introduction and overview: mathematical strategies for filtering turbulent systems; Part I. Fundamentals: 2. Filtering a stochastic complex scalar: the prototype test problem; 3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model; 4. Continuous and discrete Fourier series and numerical discretization; Part II. Mathematical Guidelines for Filtering Turbulent Signals: 5. Stochastic models for turbulence; 6. Filtering turbulent signals: plentiful observations; 7. Filtering turbulent signals: regularly spaced sparse observations; 8. Filtering linear stochastic PDE models with instability and model error; Part III. Filtering Turbulent Nonlinear Dynamical Systems: 9. Strategies for filtering nonlinear systems; 10. Filtering prototype nonlinear slow-fast systems; 11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods; 12. Filtering turbulent nonlinear dynamical systems by linear stochastic models; 13. Stochastic parameterized extended Kalman filter for filtering turbulent signal with model error; 14. Filtering turbulent tracers from partial observations: an exactly solvable test model; 15. The search for efficient skilful particle filters for high dimensional turbulent dynamical systems; References; Index.

最近チェックした商品