Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons (Cambridge Texts in Applied Mathematics)

個数:
  • ポイントキャンペーン

Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons (Cambridge Texts in Applied Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 362 p.
  • 言語 ENG
  • 商品コード 9781107012547
  • DDC分類 531.1133

基本説明

The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.

Full Description

The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg-de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.

Contents

Preface; Acknowledgements; Part I. Fundamentals and Basic Applications: 1. Introduction; 2. Linear and nonlinear wave equations; 3. Asymptotic analysis of wave equations; 4. Perturbation analysis; 5. Water waves and KdV type equations; 6. Nonlinear Schrödinger models and water waves; 7. Nonlinear Schrödinger models in nonlinear optics; Part II. Integrability and Solitons: 8. Solitons and integrable equations; 9. Inverse scattering transform for the KdV equation; Part III. Novel Applications of Nonlinear Waves: 10. Communications; 11. Mode-locked lasers; 12. Nonlinear photonic lattices; References; Index.

最近チェックした商品