Linear Algebraic Groups and Finite Groups of Lie Type (Cambridge Studies in Advanced Mathematics)

個数:

Linear Algebraic Groups and Finite Groups of Lie Type (Cambridge Studies in Advanced Mathematics)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 324 p./サイズ 100 exercises
  • 言語 ENG
  • 商品コード 9781107008540
  • DDC分類 512.482

基本説明

Tried and tested for graduate courses. Includes numerous exercises and examples ranging in difficulty.

Full Description

Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.

Contents

Preface; List of tables; Notation; Part I. Linear Algebraic Groups: 1. Basic concepts; 2. Jordan decomposition; 3. Commutative linear algebraic groups; 4. Connected solvable groups; 5. G-spaces and quotients; 6. Borel subgroups; 7. The Lie algebra of a linear algebraic group; 8. Structure of reductive groups; 9. The classification of semisimple algebraic groups; 10. Exercises for Part I; Part II. Subgroup Structure and Representation Theory of Semisimple Algebraic Groups: 11. BN-pairs and Bruhat decomposition; 12. Structure of parabolic subgroups, I; 13. Subgroups of maximal rank; 14. Centralizers and conjugacy classes; 15. Representations of algebraic groups; 16. Representation theory and maximal subgroups; 17. Structure of parabolic subgroups, II; 18. Maximal subgroups of classical type simple algebraic groups; 19. Maximal subgroups of exceptional type algebraic groups; 20. Exercises for Part II; Part III. Finite Groups of Lie Type: 21. Steinberg endomorphisms; 22. Classification of finite groups of Lie type; 23. Weyl group, root system and root subgroups; 24. A BN-pair for GF; 25. Tori and Sylow subgroups; 26. Subgroups of maximal rank; 27. Maximal subgroups of finite classical groups; 28. About the classes CF1, ..., CF7 and S; 29. Exceptional groups of Lie type; 30. Exercises for Part III; Appendix A. Root systems; Appendix B. Subsystems; Appendix C. Automorphisms of root systems; References; Index.

最近チェックした商品