タンパク質機能予測:研究法・プロトコル(第2版)<br>Protein Function Prediction : Methods and Protocols (Methods in Molecular Biology) (2ND)

個数:

タンパク質機能予測:研究法・プロトコル(第2版)
Protein Function Prediction : Methods and Protocols (Methods in Molecular Biology) (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 350 p.
  • 言語 ENG
  • 商品コード 9781071646618

Full Description

This fully updated volume explores a wide array of new and state-of-the-art tools and resources for protein function prediction. Beginning with in-depth overviews of essential underlying computational techniques, such as machine learning, multi-task learning, protein language models, and deep learning, the book continues by covering specific tools for protein function prediction, ranging from gene ontology-term predictions to the predictions of binding sites, protein localization and solubility, signal peptides, intrinsic disorder, and intrinsically disordered binding regions, as well as presenting databases that address protein moonlighting and protein binding. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, step-by-step instructions on how to use software and web resources, use cases, and tips on troubleshooting and avoiding known pitfalls.

 

Authoritative and up-to-date, Protein Function Prediction: Methods and Protocols, Second Edition helps readers to understand and appreciate this vibrant and growing research area and guides in the quest to identify and use the best computational methods and resources for their projects.

Contents

Computational Prediction of Protein Functional Annotations.- Machine Learning for Protein Function Prediction.- Graph Neural Network-Based Approaches for Protein Function Prediction.- Multi-Task Learning-Based Approaches for Protein Function Prediction.- A Survey of Deep Learning Methods and Tools for Protein Binding Site Prediction.- A Survey of Current Status in AI-Based Topology Prediction of Transmembrane Proteins.- NetGO 3.0: A Recent Protein Function Prediction Tool Based on Protein Language Model.- Predicting Protein Functions with Function-Aware Domain Embeddings Using Domain-PFP.- Integrating Gene Ontology Relationships for Protein Function Prediction Using PFresGO.- Annotating Genomes with DeepGO Protein Function Prediction Tools.- An Online Server for Geometry-Aware Protein Function Annotations through Predicted Structure.- Exploring Binding Sites on Proteins for Function Prediction Using the PoSSuM Databases.- Comprehensive Prediction of Protein Localization and Signal Peptides Using MULocDeep.- A Benchmarking Platform for Assessing Protein Language Models on Function-Related Prediction Tasks.- Prediction of Intrinsic Disorder Functions with DEPICTER2.- Prediction of Disordered Linear Interacting Peptides with CLIP.- Prediction of Intrinsically Disordered Lipid Binding Residues with DisoLipPred.- NaviGO: An Interactive Tool for Gene Ontology Functional Analysis with Free Text GO Summaries.- Using the MoonProt Database for Understanding Protein Functions.- Illustrative Features and Utilities of MPAD: Thermodynamic Database for Membrane Protein-Protein Complexes.

最近チェックした商品