Machine Learning for Brain Disorders (Neuromethods)

個数:

Machine Learning for Brain Disorders (Neuromethods)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 860 p.
  • 言語 ENG
  • 商品コード 9781071631973

Full Description

This Open Access volume provides readers with an up-to-date and comprehensive guide to both methodological and applicative aspects of machine learning (ML) for brain disorders. The chapters in this book are organized into five parts. Part One presents the fundamentals of ML. Part Two looks at the main types of data used to characterize brain disorders, including clinical assessments, neuroimaging, electro- and magnetoencephalography, genetics and omics data, electronic health records, mobile devices, connected objects and sensors. Part Three covers the core methodologies of ML in brain disorders and the latest techniques used to study them. Part Four is dedicated to validation and datasets, and Part Five discusses applications of ML to various neurological and psychiatric disorders. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory.

Comprehensive and cutting, Machine Learning for Brain Disorders is a valuable resource for researchers and graduate students who are new to this field, as well as experienced researchers who would like to further expand their knowledge in this area. This book will be useful to students and researchers from various backgrounds such as engineers, computer scientists, neurologists, psychiatrists, radiologists, and neuroscientists.

Contents

A Non-Technical Introduction to Machine Learning.- Classic Machine Learning Methods.- Deep Learning: Basics and Convolutional Neural Networks (CNN).- Recurrent Neural Networks (RNN) - Architectures, Training Tricks, and Introduction to Influential Research.- Generative Adversarial Networks and Other Generative Models.- Transformers and Visual Transformers.- Clinical Assessment of Brain Disorders.- Neuroimaging in Machine Learning for Brain Disorders.- Electroencephalography and Magnetoencephalography.- Working with Omics Data, An Interdisciplinary Challenge at the Crossroads of Biology and Computer Science.- Electronic Health Records as Source of Research Data.- Mobile Devices, Connected Objects, and Sensors.- Medical Image Segmentation using Deep Learning.- Image Registration: Fundamentals and Recent Advances Based on Deep Learning.- Computer-Aided Diagnosis and Prediction in Brain Disorders.- Subtyping Brain Diseases from Imaging Data.- Data-Driven Disease Progression Modelling.- Computational Pathology for Brain Disorders.- Integration of Multimodal Data.- Evaluating Machine Learning Models and their Diagnostic Value.- Reproducibility in Machine Learning for Medical Imaging.- Interpretability of Machine Learning Methods Applied to Neuroimaging.- A Regulatory Science Perspective on Performance Assessment of Machine Learning Algorithms in Imaging.- Main Existing Datasets for Open Brain Research on Humans.- Machine Learning for Alzheimer's Disease and Related Dementias.- Machine Learning for Parkinson's Disease and Related Disorders.- Machine Learning in Neuroimaging of Epilepsy.- Machine Learning in Multiple Sclerosis.- Machine Learning for Cerebrovascular Disorders.- The Role of Artificial Intelligence in Neuro-Oncology Imaging.- Machine Learning for Neurodevelopmental Disorders.- Machine Learning and BrainImaging for Psychiatric Disorders: New Perspectives.

最近チェックした商品