Sobolev Maps to the Circle : From the Perspective of Analysis, Geometry, and Topology (Progress in Nonlinear Differential Equations and Their Applications)

個数:

Sobolev Maps to the Circle : From the Perspective of Analysis, Geometry, and Topology (Progress in Nonlinear Differential Equations and Their Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 530 p.
  • 言語 ENG
  • 商品コード 9781071615102
  • DDC分類 515

Full Description

The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics.  This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. 
Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research.  Historical perspectives and a comprehensive list of references close out each chapter.  Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena.
Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology.  It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.

Contents

Lifting in $W^{1,p}$.- The Geometry of $J(u)$ and $\Sigma(u)$ in 2D; Point Singularities and Minimal Connections.- The Geometry of $J(u)$ and $\Sigma(u)$ in 3D (and higher); Line Singularities and Minimal Surfaces.- A Digression: Sphere-Valued Maps.- Lifting in Fractional Sobolev Spaces and in $VMO$.- Uniqueness of Lifting and Beyond.- Factorization.- Applications of the Factorization.- Estimates of Phases: Positive and Negative Results.- Density.- Traces.- Degree.- Dirichlet Problems, Gaps, Infinite Energies.- Domains with Topology.- Appendices.

最近チェックした商品