Fundamentals of Machine Learning for Life Sciences : A Simple, Step-by-Step Approach with Examples in R (Machine Learning for Life Science)

個数:
  • 予約
  • ポイントキャンペーン

Fundamentals of Machine Learning for Life Sciences : A Simple, Step-by-Step Approach with Examples in R (Machine Learning for Life Science)

  • ウェブストア価格 ¥30,355(本体¥27,596)
  • CRC Press(2026/07発売)
  • 外貨定価 US$ 140.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,375pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9781041275565

Full Description

Machine learning touches our lives in quiet and remarkable ways. It helps doctors detect illnesses sooner by recognizing subtle patterns in scans and helping them make sense of medical data with speed, judgment, and care. It helps us care for our fields and forests by tracking changes that unfold over time. It helps us study the weather with a memory far longer than our own, and notices small signs that equipment may soon need attention. And when we find ourselves in unfamiliar places, it helps us translate words, find our bearings, and discover new corners to explore. And yet, even as it becomes part of daily life, its inner workings can still feel distant when you first encounter them. Fundamentals of Machine Learning aims to bring it within reach.

This book offers a clear and steady introduction to how machines learn from data. It explains how models begin to understand, decide, improve, and sometimes falter. Ideas build gradually, one upon another, supported by real examples and datasets in R. The focus is insight over jargon, clarity over complexity. As these ideas become familiar, they also hold the promise of supporting the works of scientists, engineers, and students — by opening new pathways of exploration.

Inside the Book

• How learning algorithms discover patterns
• Supervised, unsupervised, and other ways machines learn
• Regression, decision trees, neural networks, and more
• Working with data and understanding results
• Ethics, fairness, and responsible use

Warm, practical, and approachable, Fundamentals of Machine Learning encourages readers to build confidence step by step, to make sense of new ideas in their own time, and to discover how understanding machine learning can enrich the way we work, learn, and see the world.

Contents

1 What is machine learning? 2 Basic setup 3 Machine learning in practice 4 Linear regression 5 Polynomial regression 6 Logistic regression 7 K-Nearest Neighbors 8 Support Vector Machines 9 Decision trees and forests 10 Neural networks and deep learning 11 What to do next? 12 References 13 Index

最近チェックした商品