The e-Dimensionality Information Principle : Data, Representation, and Algorithms

個数:
  • 予約

The e-Dimensionality Information Principle : Data, Representation, and Algorithms

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781041224303
  • DDC分類 516.15

Full Description

This book is based on an information-theoretic result according to which optimal information is associated with e-dimensionality. Drawing on the principle that nature chooses optimal solutions, it demonstrates that noninteger dimensionality provides a unifying framework for understanding diverse phenomena across physics, cosmology, biology, engineering, and data science. The work explores how optimal information representation naturally leads to scale-invariance and self-similarity - characteristics observed throughout natural systems, from fractals and genetic structures to evolutionary processes and neural networks. This book:

• Reveals why three-way logic is superior to binary logic in natural systems and provides an information-theoretic rationale for the power laws frequently encountered across scientific applications

• Explains fundamental biological mysteries, including the non-uniform groupings of codons in the genetic code (ranging from one to six per amino acid), and offers novel insights into chromatin geometry and evolutionary dynamics

• Addresses the reproducibility crisis in biomedical research by proposing new significance testing approaches based on noninteger dimensionality that move beyond traditional binary hypothesis testing methods

Written for researchers and graduate students in electrical engineering, computer science, physics, and biology, this work serves as both an advanced textbook for senior-level and graduate courses and a research resource providing fresh perspectives on longstanding problems across multiple disciplines.

Contents

1. Information and optimal representation. 2. The intrinsic dimensionality of data. 3. Fractals with optimal information dimension. 4. Self-similarity, maximum entropy principle, and the genetic code. 5. Information optimality and the geometry of chromatin. 6. Autonomous cognitive agents in a neural network. 7. Evolutionary stages in the universe. 8. Nonlocal noise and self-decoherence. 9. Significance testing in natural and biological systems. 10. Epilogue.

最近チェックした商品