What's the Question? : Deciding What You Really Want to Know (Chapman & Hall/crc Data Science Series)

個数:
  • 予約

What's the Question? : Deciding What You Really Want to Know (Chapman & Hall/crc Data Science Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 288 p.
  • 言語 ENG
  • 商品コード 9781041213574

Full Description

Statistics and data science aim to extract understanding from data and guide decision-making. However, before applying any analytical tools we need absolute clarity about what we want to know or accomplish. Ambiguous objectives inevitably lead to mistaken conclusions and flawed actions. This book investigates the deeper challenges of formulating clear questions and matching analytical methods to those questions—issues that apply as much to elementary statistical tools as to sophisticated techniques. Rather than focusing on standard statistical misuses or data provenance issues, this work examines the critical step of ensuring your analysis actually answers the question you mean to ask.

Drawing from collaborative work across finance, medicine, government, manufacturing, defense, and other fields, the book deliberately emphasizes basic and familiar tools so the fundamental issues are accessible to everyone. Following John Tukey's insight about the simplest problems of data analysis, the most detailed discussions centre on averages and comparisons between distributions, though the principles apply with even greater force to advanced methods that fewer people fully understand.

Key Features:

• Focuses on question formulation rather than computational techniques, addressing the step that precedes all successful data analysis

• Emphasizes basic statistical tools (averages, comparisons) to make fundamental challenges visible to all practitioners

• Contains 130 text boxes presenting essential ideas in non-technical language, creating a "two-in-one" book accessible to both mathematical and non-mathematical readers

• Provides real-world examples drawn from diverse fields including finance, healthcare, government, manufacturing, and defense

• Offers a deep-dive analysis of a specific comparison method to illustrate the care required for precise statistical reasoning

• Structured progression from general principles through detailed mathematical exploration to practical applications across various analytical scenarios

This book serves as an essential guide for statisticians, data scientists, researchers, and anyone who uses data to make decisions. Whether you're a practitioner seeking to improve your analytical approach or a student learning to think critically about statistical questions, this work will help you use data analytical tools more effectively and avoid the costly mistakes that arise from asking the wrong questions of your data.

Contents

1. THE QUESTION. 2. THE DATA. 3. AVERAGES. 4. COMPARING GROUPS. 5. ON THE PROBABILITY THAT X IS GREATER THAN Y. 6. SUPERVISED CLASSIFICATION, MACHINE LEARNING, AND AI. 7. CLUSTER ANALYSIS AND UNSUPERVISED CLASSIFICATION. 8. CORRELATION. 9. REGRESSION. 10. INTERACTIONS. 11, THE IGNORANCE OF CROWDS. 12. BUT IS IT FAIR?. 13. TWO PROBABILITY PUZZLES. 14. STATISTICAL INFERENCE. 15: THE END

最近チェックした商品