測度論と積分法<br>Measure Theory and Integration

個数:
  • 予約
  • ポイントキャンペーン

測度論と積分法
Measure Theory and Integration

  • ウェブストア価格 ¥28,070(本体¥25,519)
  • CRC Press(2026/05発売)
  • 外貨定価 US$ 126.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,275pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 326 p.
  • 言語 ENG
  • 商品コード 9781041208990

Full Description

This book offers a rigorous, comprehensive, and modern presentation of the most traditional concepts in measure theory and integration. Building on the classical foundations, it introduces the theory with full generality and meticulous attention to detail, following the stylistic tradition first introduced by Nicolas Bourbaki. The book is designed for graduate students and young researchers seeking a thorough exposition of the theory in an abstract setting, complete proofs, and the strategies underlying them, fostering good mathematical habits in logical reasoning and clarity of deduction.

Beyond standard treatments, the book features several distinctive elements: Some classical results, such as Radon-Nikodým theorem, and Lebesgue and Hahn decompositions, have been presented with original proofs, aimed to clarifying the logic behind the results; some topics that are often overlooked, such as kernels, uniform integrability, the Vitali-Hahn-Saks and Dunford-Pettis theorems are developed in full in dedicated chapters, and a full account of the disintegration of measures is developed. The book also pays special attention to modern applications, including the construction of product measures for an arbitrary family of measures, by exploiting the properties of kernels, a full account of Daniell's and Carathéodory's methods for constructing and extending measures, and a thorough coverage of the theory of convergence, and showing two paramount applications of the theory to the presentation of the Lebesgue measure and the family of Hausdorff measures.

The book is largely self-contained, with supplementary sections on topology and differential calculus, and an appendix on filters and ultrafilters also included to help the reader to fully understand the notion of convergence with respect to a filter.

Contents

1. The Foundation of Measure Theory. 2. Integration. 3. Construction and Extension of Measures. 4. Kernels and Products of Measures. 5. Riesz Spaces and Signed Measures. 6. The Lp Spaces. 7. Measures on a Topological Space. 8. Convergence and Uniform Integrability. 9. Weak Convergence of Probability Measures. 10. Disintegration of Measures. 11. Lebesgue Measure. 12. Hausdorff Measures.

最近チェックした商品