Foundations of Bayesian Statistics for Data Scientists : With R and Python (Chapman & Hall/crc Texts in Statistical Science)

個数:
  • 予約
  • ポイントキャンペーン

Foundations of Bayesian Statistics for Data Scientists : With R and Python (Chapman & Hall/crc Texts in Statistical Science)

  • ウェブストア価格 ¥17,681(本体¥16,074)
  • CRC Press(2026/06発売)
  • 外貨定価 US$ 79.99
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 800pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 456 p.
  • 言語 ENG
  • 商品コード 9781041202929

Full Description

This book is an overview of the Bayesian approach to applying the most important inferential methods of statistical science. It is designed as a textbook for advanced undergraduate and master's students in Data Science, Statistics, or Mathematics who are interested in learning about Bayesian statistics.

The reader should be familiar with calculus and should have taken a statistical inference Statistics course covering the basic rules of probability, probability distributions and expectations, as well as the fundamentals of the traditional, frequentist approach to statistics, including sampling distributions, likelihood functions, basic inferential methods such as point estimation, confidence intervals, significance tests, and linear regression models.

Key Features:

● Uses real world data examples and contains numerous exercises.

● Includes software appendices in R and Python.

● Offers slides, labs, and other materials on the book's website.

Each chapter begins with a brief review of the primary frequentist methods for its topic before introducing corresponding Bayesian methods. This book presents some substantive theory as well as the methods, and is therefore intended for a reader who wishes to understand Bayesian methods rather than merely apply them. The focus is not just on presenting statistical methodologies but also on demonstrating how to implement them with modern software, emphasizing appropriate simulation methods.

Contents

1. Introduction to Bayesian Statistics 2. Bayesian Inference for Proportions 3. Bayesian Inference for Means 4. Bayesian Inference for Linear Models 5. Bayesian Inference for Generalized Linear Models 6. Bayesian MCMC Posterior Computation and Diagnostics 7. Choosing and Extending Bayesian Models Appendix A Using R for Bayesian Data Analysis Appendix Appendix B Using Python in Statistical Science Appendix C Solutions to Exercises (odd-numbered)

最近チェックした商品