Federated Learning : Security and Privacy

個数:
  • 予約
  • ポイントキャンペーン

Federated Learning : Security and Privacy

  • ウェブストア価格 ¥13,041(本体¥11,856)
  • CRC Press(2025/12発売)
  • 外貨定価 US$ 65.00
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 236pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 120 p.
  • 言語 ENG
  • 商品コード 9781041174622

Full Description

As data becomes more abundant and widespread across personal devices, the need for secure, privacy-aware machine learning is growing. Federated Learning (FL) offers a promising solution, enabling smart devices to collaboratively train models without sharing raw data. Yet, despite its benefits, FL faces serious risks from poisoning and inference attacks.

This book begins by introducing the fundamentals of machine learning, along with core deep learning architectures. Based on this foundation, it introduces the concept of Federated Learning (FL), which is a decentralised approach that enables collaborative model training without sharing raw data. The book provides an in-depth exploration of FL's various forms, system architectures, and practical applications. A significant emphasis is placed on the growing security and privacy concerns in FL, particularly poisoning (both data poisoning and model poisoning) and inference attacks. It discusses state-of-the-art mitigation strategies, such as Byzantine-robust aggregation and inference-resistant techniques, supported with practical implementation insights.

This book uniquely bridges foundational concepts with advanced topics in Federated Learning, offering a comprehensive view of its vulnerabilities and their mitigation. By combining theory with practical implementation of attacks and mitigation techniques, it serves as a valuable resource for researchers, practitioners, and students aiming to build secure, privacy-preserving collaborative machine learning systems.

This book is unique due to its end-to-end coverage of Federated Learning (FL), from foundational machine and deep learning concepts to real-time deployment of FL along with security and privacy challenges associated. It both explains theory and offers hands-on implementation of attacks and defenses. This practical approach, combined with a clear structure and real-world relevance, makes it ideal for both academic and industry audiences. Promotional emphasis should highlight the book's focus on actionable insights, its relevance to privacy-preserving and secure AI, and its utility as a learning and reference tool for building secure collaborative learning systems.

Contents

1. Introduction to Machine Learning
a. Types of Learning
b. Learning Tasks
c. Cost Function
d. Optimization
e. Evaluation Metrics
f. Artificial Neural Network
g. Implementation
2. Federated Learning
a. Importance of FL
b. Types of FL
c. Applications in FL
d. Challenges in FL
e. Security and Privacy Issues
f. Defense Techniques
g. Privacy-Preserving Byzantine-Robust FL
h. Implementation
3. Poisoning Attacks in FL
a. Attacker
b. Label flipping attack
c. Gaussian attack
d. LIE attack
e. Krum attack
f. Trim attack
g. Shejwalkar attack
h. Scaling attack
i. Edge attack
j. Vulnerabilities in Cosine Similarity-based Defenses
k. Implementation
4. Inference Attacks in FL
a. Attacker goal
b. Data reconstruction attacks
c. Membership inference attacks
d. Property inference attacks
e. Implementation
5. Byzantine Robust Defenses
a. Design goals
b. Krum
c. Median and Trimmed Mean
d. Bulyan
e. FoolsGold
f. FLTrust
g. Moat
h. DeFL
i. RDFL
j. FLTC
k. Implementation
6. Privacy-Preserving FL
a. Differential Privacy
b. DPFL: A Client Level
c. Homomorphic
d. BatchCrypt: HE-based Scheme
e. Threshold Multi-key HE Scheme
f. Secure Multi-Party Computation
g. Practical Secure Aggregation
h. Summary
i. Implementation

最近チェックした商品