量子機械学習:概念、アルゴリズム、応用<br>Quantum Machine Learning : Concepts, Algorithms, and Applications

個数:
  • 予約
  • ポイントキャンペーン

量子機械学習:概念、アルゴリズム、応用
Quantum Machine Learning : Concepts, Algorithms, and Applications

  • ウェブストア価格 ¥54,219(本体¥49,290)
  • Auerbach(2026/04発売)
  • 外貨定価 US$ 265.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 2,460pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781041136620

Full Description

In the exploration of new frontiers in data-driven solutions, the potential of quantum-enhanced machine learning has become too important to overlook. Quantum machine learning, though still in its formative stages, holds the promise to tackle some of the most complex problems that lie beyond the reach of classical computing. Quantum Machine Learning: Concepts, Algorithms, and Applications is a guide to understanding such quantum principles as superposition and entanglement and how they can enhance learning algorithms and data-processing capabilities. The book features a carefully structured progression from foundational concepts and core algorithms to application-driven case studies and emerging directions for future exploration.

The book provides a broad and in-depth treatment of topics ranging from quantum data encoding and quantum neural networks to hybrid models and optimization frameworks. Emphasis has also been placed on real-world use cases and the practical tools available for implementation, thereby ensuring that this book serves not only as a reference but also as a springboard for experimentation and innovation. Highlights include the following:

Implementing quantum neural networks on near-term quantum hardware
Quantum variational optimization for machine learning
Quantum-accelerated neural imputations with large language models
Emerging trends, addressing hardware limitations, algorithm optimization, and ethical considerations

This book serves as both a primer and an advanced guide by providing essential knowledge for understanding and implementing quantum-enhanced AI solutions in various professional contexts. It equips readers to become active participants in the quantum revolution transforming machine learning.

Contents

1. Introduction to Quantum Computing 2. Principles, Algorithms, and Technologies behind Quantum Computing 3. An Overview of Machine Learning: Concepts, Algorithms, and Practices 4. Quantum Information Theory 5. Quantum Machine Learning from Theory to Data-Driven Implementations 6. A Mathematical Perspective on Quantum Information Theory 7. Quantum Neural Networks 8. Implementing Quantum Neural Networks on Near-Term Quantum Hardware 9. A Comparative Analysis of Classical and Quantum Approaches for Heart Attack Prediction 10. Quantum Optimization for Machine Learning 11. Quantum Variational Optimization for Machine Learning 12. Latest Developments in Quantum Optimization for Machine Learning 13. Quantum Generative Adversarial Networks 14. Heart Disease Prediction Analysis using Quantum-Enhanced Features with Classical and Quantum Machine Learning Models 15. Quantum-Accelerated Neural Imputation with Large Language Models (LLMs) 16. Quantum Key Distribution Beyond 5G and 6G: Hybrid Integrations, Testbeds, and Future Directions

最近チェックした商品