Burnout Intervention Mechanisms for Online Learning Processes Enabled by Predictive Learning Analytics

個数:
  • 予約

Burnout Intervention Mechanisms for Online Learning Processes Enabled by Predictive Learning Analytics

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 204 p.
  • 言語 ENG
  • 商品コード 9781041134084

Full Description

This title aims to fully demonstrate the burnout of students in online learning processes. The authors propose a series of feasible and reliable solutions to sufficiently obtain and analyze massive instances of online learning behavior.

In order to flexibly perceive and intervene in the "burnout state" and improve online learning processes and learning effectiveness, the authors design and construct various novel data analysis models and decision prediction methods using technological means and data-driven learning strategies. Their innovative methods, techniques, and decisions would benefit autonomous learning behavior tracking and stimulate the learning interest of online learning processes enabled by predictive learning analytics. By employing behavioral science research strategies, they build adaptive prediction and optimization measures for positive online learning patterns, improve learning behaviors, optimize learning states, and establish dynamic and sustainable knowledge tracing paths and behavior scheduling methods, enabling users to achieve self-organization and self-mobilization in their overall learning processes.

The title will appeal to scholars and students in Europe, North America, and Asia, especially those majoring in educational statistics and measurement, educational big data, learning analytics, educational psychology, artificial intelligence in education, computer science, and online collaborative learning.

Contents

1. Introduction 2. Key Burnout Feature selection and association prediction of learning behaviors 3. Learning Behavior Reasoning and Critical Path Fusion for Burnout Based on Multi Entity Association 4. Predicting Burnout States and Guiding Learning Behaviors driven by knowledge Graph Propagation 5. Adaptive Positioning of Temporal intervals for key interventions and Burnout Tracking 6. Risk Prediction and Early Warning Routing Formation of Burnout State Propagation 7. Positive Guidance of Learning Behaviors Based on Effective Burnout Intervention 8. Conclusion

最近チェックした商品