Everyday Life is Full of Math (Ak Peters/crc Recreational Mathematics Series)

個数:
  • 予約

Everyday Life is Full of Math (Ak Peters/crc Recreational Mathematics Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9781041133490

Full Description

This book explores how mathematics appears in everyday life. It presents math in a fun and beautiful way using knowledge at the junior high and high school level. It is written for general readers, not for experts. The book avoids difficult math and instead focuses on how new ways of thinking and careful observation can reveal interesting math ideas. It is divided into 33 topics. These include familiar recreational math like tournament games, magic squares, and math tricks, as well as unique ideas like the geometry of origami and toy train tracks. Some of the topics in this book may be unfamiliar to readers outside Japan, as they are based on things the author has observed in daily life in Japan. However, this is also one of the unique features of the book. It offers readers a glimpse into everyday life in Japan. The goal is to help readers feel closer to math, rather than to provide deep academic content.

Features

• Easy to understand with junior high or high school level math knowledge

• Introduces math found in real life, like origami

• Includes many topics based on the author's popular social media posts (over 23,000 followers on X)

• Connects math topics with hands-on activities and experiences

• Helps readers see the world in a new way through a "mathematical way of thinking"

• Focuses on intuitive and visual understanding, not difficult formulas or theories

• Provide links (with QR codes) to puzzle apps developed by the author.

Contents

Foreword Preface Section I TheWonders of Numbers and Shapes Around Us Chapter 1 Is "Paper" the Ultimate Strategy in a Rock-Paper-
Scissors Tournament!? Chapter 2 Math Magic with Tricks and Twists Chapter 3 The Numbers Around Us: Which Digit is Used the Most? Chapter 4 Conic Sections Created by Light Chapter 5 What Is the True Shape of a Crescent Moon Chapter 6 An Equation That Draws the Shape of a Pon de Ring Donut Chapter 7 The Method is Wrong, but the Result is Correct Chapter 8 A Mathematical Mystery! The Collatz Conjecture Chapter 9 Strange Magic Square Chapter 10 Rings That Look Different but Have the Same Volume Chapter 11 Convex Polygons and Radar Charts Chapter 12 What If We Used Dice to Decide How Much New
Year's Money to Give? Chapter 13 Shapes Made with Triangles Chapter 14 Success Rate of the "Kendama" Challenge Chapter 15 Estimating the Dimensions of a 1-Liter Milk Carton Chapter 16 Seats on the Shinkansen (Japan's bullet train) Divided into Two and Three Rows Section II Playful Math You Can Touch and Feel Chapter 17 Enjoying the Cleanup of Building Blocks Chapter 18 The Mysterious Surface Made of Cotton Swabs: A Hyperboloid Chapter 19 With 30 Toy Train Tracks, You Can Play for Over 200 Years Chapter 20 Is It Easy or Difficult to Make a Plarail Layout That Loops Back to the Start? Chapter 21 Looking at Pi Chapter 22 The Tower of Hanoi Algorithm Chapter 23 Folding Paper Along Curves Is Fun Chapter 24 Folding Paper to Reach the Moon Chapter 25 The Wonder of Repeated Folding Chapter 26 Modular Origami Balls and Polyhedral Duals Chapter 27 Pop-Up Figures Chapter 28 The Shape of a Peel Spun from an Apple Chapter 29 Fractal Figures Drawn by Coloring Grid Cells Chapter 30 A Rather Casually Made Star Polyhedron Chapter 31 The Wonder of Origami Crease Patterns Chapter 32 How Can We Fit As Much As Possible into an Envelope? Chapter 33 Spiral Made from Paper Tape Afterword

最近チェックした商品