Applications of Large Language Models (LLM) in Healthcare Systems : Opportunities, Challenges, and Ethical Considerations

個数:
  • 予約

Applications of Large Language Models (LLM) in Healthcare Systems : Opportunities, Challenges, and Ethical Considerations

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9781041124917

Full Description

This book offers a comprehensive exploration into the role of Large Language Models (LLMs) in modern healthcare. It focuses specifically on the lifecycle of LLM deployment in healthcare settings, including transparency, accountability, data privacy, and regulatory compliance to ensure safe and effective use.

By bridging the gap between technical artificial intelligence (AI) development and clinical application, this book highlights the critical collaboration between clinicians and data scientists to create representative datasets and fine-tune models for clinical accuracy and interpretability. Real-world challenges such as mitigating bias, managing AI hallucinations, and safeguarding patient confidentiality are explored, alongside strategies for continuous improvement and long-term impact assessment.

Key features include:

- Case studies illustrating LLM applications in clinical decision support, medical imaging, patient communication, and administrative automation.

- In-depth discussion of data privacy, regulatory compliance, and ethical considerations in AI healthcare applications.

- Insights into overcoming challenges like bias, hallucinations, and interoperability with existing health information systems.

- How LLMs could revolutionize patient care in future, including operational efficiency and personalized medicine.

This book is an essential resource for clinicians, healthcare executives, technologists, data scientists, and students seeking to harness the power of LLMs to improve patient outcomes and streamline healthcare delivery.

Contents

Preface

List of Contributors

Editor Bios

Chapter 01 Large Language Models in Clinical Application

Homayoun Safarpour, Amirfarhad Farhadi, Martin Cunneen, György Molnár, Enikő Nagy

Chapter 02 Administrative Efficiency: Providing Healthcare Operations

Alireza Taheri, Amirfarhad Farhadi, Azadeh Zamanifar, Amirmohammad Mataji

Chapter 03 LLMs in drug discovery, clinical trial analysis, and medical literature review

Sina Abbaskhani, Deniz NoorMohammadzadehMaleki, Amirfarhad Farhadi, and Azadeh Zamanifar

Chapter 04 LLMs For Personalaized Medicine and Treatment planning

Amirfarhad Farhadi, and Nasser Mozayeni

Chapter 05 The Large Language Models for Public Health Surveillance and Outbreak Arezou Naghib, Farhad Soleimanian Gharehchopogh, and Parisa Tavana

Chapter 06 The Role of Large Language Models in Delivering Artificial Intelligence-Based Psychological Interventions and Therapies

Arezou Naghib, Farhad Soleimanian Gharehchopogh, and Azadeh Zamanifar

Chapter 07 Explainable AI (XAI): Making LLM Decisions Transparent and Trustworthy

Amirfarhad Farhadi, Azadeh Zamanifar, Fouad Bahrpeyma

Chapter 08 Ethical Implications for LLMs

Mohammad Saleh, and Azadeh Tabatabaei

Chapter 09 Limitations of Large Language Models in Healthcare Systems

Farshid Babapour Mofrad , and Midya Yousefzamani

Chapter 10 Future Trends and Innovations in Healthcare Systems Using LLMs

Kiana Pilevar Abrisham, and Khalil Alipour

最近チェックした商品