Experimental Design for Data Science and Engineering (Chapman & Hall/crc Texts in Statistical Science)

個数:
  • 予約

Experimental Design for Data Science and Engineering (Chapman & Hall/crc Texts in Statistical Science)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781041117520

Full Description

Theory, experiments, computation, and data are considered as the four pillars of science and engineering. Experimental Design for Data Science and Engineering describes efficient statistical methods for making the experiments cheaper and computations faster for extracting valuable information from data and help identify discrepancies in the theory. The book also includes recent advances in experimental designs for dealing with large amounts of observational data.

Traditionally the design and analysis of physical and computer experiments are treated differently, but this book attempts to create a unified framework using Gaussian process models. Although optimal designs are formulated using Gaussian process models, the focus is on obtaining practical experimental designs that are robust to model assumptions. A wide variety of topics are covered in the book -- from designs for interpolating or integrating simple functions to designs that are useful for optimizing and calibrating complex computer models. It draws techniques that are spread across the fields of statistics, applied mathematics, operations research, uncertainty quantification, and information theory, and build experimental design as a fundamental data analytic tool for engineering and scientific discoveries.

Designs for both computer and physical experiments are discussed in a unified framework.
Tries to integrate several concepts from numerical analysis, Monte Carlo methods, sensitivity analysis, optimization, and machine learning with experimental design techniques in statistics.
Methods are explained using many real experiments from physical sciences and engineering.
Experimental design techniques for analysis and compression of big data are discussed.
All the numerical illustrations in the book are reproducible using R and Python codes provided in the author's GitHub site.

Contents

Section I: Introduction 1. Experiments 2. Modeling Techniques Section II: Computer Experiments 3. Model-based Designs 4. Space-Filling Designs 5. Representative Points 6. Screening Designs 7. Sequential Designs Section III: Physical Experiments 8. Fractional Factorial Designs 9. Model Calibration Section IV: Data Science 10. Data Subsampling 11. Data Analysis

最近チェックした商品