The Adoption of Artificial Intelligence and Inertia in Higher Education : Exploring Complex Resistance to Technological Change (Routledge Research in the Sociology of Education)

個数:

The Adoption of Artificial Intelligence and Inertia in Higher Education : Exploring Complex Resistance to Technological Change (Routledge Research in the Sociology of Education)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 264 p.
  • 言語 ENG
  • 商品コード 9781041105978
  • DDC分類 378.1734

Full Description

This research monograph explores the complex resistance to integrating Artificial Intelligence (AI) within higher education institutions. Despite the significant potential of AI to enhance education, faculty adoption remains inconsistent and is often met with skepticism.

This book investigates key factors contributing to this resistance, such as leadership deficits, funding barriers, cultural inertia, and faculty attitudes toward technological change. Drawing on qualitative and quantitative empirical data, case studies from U.S. and international institutions, and theoretical analysis, the book uncovers underlying concerns about job security and professional identity.

It points to actionable strategies for overcoming these barriers and will be relevant for scholars, researchers, advanced students, and educators grappling with issues navigating technological integration in academia and with interests in the sociology of education, educational technology, and higher education administration.

Contents

0. Introduction: Understanding Inertia in Higher Education AI Adoption 0.1 Historical Context and Current Landscape 0.2 Key Themes and Conceptual Framework 0.3 Structure and Chapter Overview 1. Leadership and Funding Constraints 1.1 The Role of Leadership in Technological Change 1.2 Visionary versus Reactive Leadership: Case Studies 1.3 Leadership Strategies and Risk Management 2. Institutional Hierarchies and Cultural Dynamics 2.1 Institutional Structures, Groupthink, and Conservatism 2.2 Cultural Inertia and Resistance Dynamics 2.3 Explicit and Implicit Institutional Biases 3. Regional Disparities and Global Perspectives 3.1 Geographic and Economic Factors Influencing Adoption 3.2 Comparative Case Studies: Developed versus Emerging Economies 3.3 Policies and Institutional Strategies for Mitigating Global Inequality 4. Disciplinary Variations and Cultural Resistance 4.1 Disciplinary Attitudes: STEM and Humanities 4.2 Cultural Resistance within Academic Disciplines 4.3 Comparative Analysis and Empirical Evidence 5. Generational and Personality Influences 5.1 Generational Theory and Attitudinal Differences 5.2 Personality Traits and Technological Acceptance 5.3 Empirical Analysis of Generational and Personality Impacts 6. Professional Identity, Job Security, and Existential Concerns 6.1 Professional Identity and Resistance to Technological Change 6.2 Concerns Over Job Security and Role Displacement 6.3 Identity Loss and Self-Actualization 7. Institutional Politics, Succession Planning, and Collaborative Leadership 7.1 Institutional Politics and Stability of Technological Change 7.2 Succession Planning and Leadership Continuity 7.3 Evolving Leadership Styles: Hierarchical to Collaborative Models 8. Bridging the Generational Divide: Mentorship and Sustainable Cooperation 8.1 The Importance of Mentorship in Technological Integration 8.2 Intergenerational Cooperation and Knowledge Transfer 8.3 Case Studies of Effective Mentorship and Collaboration 9, Conclusion: Strategic Frameworks for Sustainable AI Adoption 9.1 Future Research Directions and Potential Developments 9.2 Implications for Policy and Educational Practices 9.3 Final Reflections on the Future of AI in Higher Education

最近チェックした商品