Bayesian Survival, Longitudinal, and Joint Models with INLA

個数:
  • 予約

Bayesian Survival, Longitudinal, and Joint Models with INLA

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781041087694

Full Description

This book provides a comprehensive and practical guide to fitting complex Bayesian survival, longitudinal and joint models using the Integrated Nested Laplace Approximations (INLA) methodology, a powerful and computationally efficient alternative to traditional MCMC methods. Aimed at graduate students, researchers, and applied statisticians in biostatistics, epidemiology, and public health, this book addresses the critical challenge of analyzing high-dimensional and correlated data. It demonstrates how to move beyond the computational limitations of conventional methods, enabling the analysis of sophisticated models that were previously out of reach.

Through a series of clear, fully reproducible examples, readers will learn to:

- Implement a wide range of survival models, including proportional hazards, competing risks, multi-state, cure, and frailty models.

- Fit various longitudinal models for continuous, count, binary, semicontinuous, and ordinal data.

- Construct and interpret joint models that link multiple longitudinal markers to single or multiple survival outcomes using various association structures.

- Incorporate spatial random effects to account for spatial autocorrelation in areal and point-referenced data.

This book is the result of a unique collaboration between the creators and key developers of the INLA methodology. The lead author, Denis Rustand, is the developer of the INLAjoint R package which serves as the primary software for the methods described. Håvard Rue is the principal architect of the INLA methodology and the R-INLA package. Janet van Niekerk is an expert in efficient Bayesian methods for complex survival analysis and a core INLA developer. Elias Teixeira Krainski is a renowned specialist in the theory and application of spatial statistics with INLA.

Contents

Preface About the authors Introduction 1 The Integrated Nested Laplace Approximations methodology 2 Survival analysis 3 Longitudinal data analysis 4 Joint modeling of longitudinal and survival data 5 Spatial models Summary References

最近チェックした商品