Mathematical Foundations of Artificial Intelligence : Basics of Manifold Theory

個数:
  • 予約

Mathematical Foundations of Artificial Intelligence : Basics of Manifold Theory

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 368 p.
  • 言語 ENG
  • 商品コード 9781041076254
  • DDC分類 006.30151607

Full Description

Mathematical Foundations of Artificial Intelligence: Basics of Manifold Theory is the first volume in a two‑part series. Together, they establish a unifying mathematical framework based on smooth manifold theory and Riemannian geometryessential tools for representing, analyzing, and integrating the growing complexity of modern artificial intelligence (AI) systems and scientific models.

Differential geometry now plays a central role across AI, biology, physics, and medicine. From deep learning, generative modeling, and manifold learning to reasoning algorithms and physical AI, manifolds offer a coherent geometric language that bridges theory and practice. This volume introduces key conceptstopological and smooth manifolds, Riemannian metrics, differential forms, Lie derivatives, and statistical geometryalongside illustrative applications to data science, genomics, drug discovery, and AI‑driven systems.

Unlike traditional texts, this book combines rigor with intuition, integrating formal theory, computational methods, and interdisciplinary insights, and is ideal for graduate students and professionals in mathematics, statistics, computer science, AI, physics, bioinformatics, and biomedical sciences. It also serves as a foundational reference for researchers developing AI systems grounded in geometry, scientific modeling, and data‑driven discovery.

Key Features

• Unifies core manifold concepts to support integrated thinking across disciplines

• Treats manifolds as natural geometric domains for data representation in AI and the sciences

• Bridges abstract theory with practical algorithms and real‑world applications

• Develops Lie derivative aware graphical neural networks for adaptive‑AI and molecular property prediction

• Develops Lie derivative enhanced reaction‑diffusion equations for disease gene identification and treatment design

• Develops probabilistic modeling and information geometry for modern learning systems

• Applies geometric insight to AI fields, including generative models, graph learning, and reasoning

• Applies the Gauss map and Chen-Gauss-Bonnet theorem to physical AI incorporating geometric constraints for robotics and tumor cell location and range identification

• Features step‑by‑step examples, case studies, and visual explanations to support understanding

• Serves as an advanced educational and skill‑building resource in the age of AI, leveraging the capabilities of emerging AI tools for automatic programming and self‑study

Contents

Author Biography Chapter 1. Smooth Manifold Chapter 2. Riemannian Geometry Chapter 3. Differential Forms Chapter 4. Lie Derivatives Chapter 5. Advanced Topics in Riemannian Geometry Chapter 6. Statistical Theory on Manifolds References

最近チェックした商品