A Course in Real Analysis (Textbooks in Mathematics) (2ND)

個数:
  • 予約

A Course in Real Analysis (Textbooks in Mathematics) (2ND)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 612 p.
  • 言語 ENG
  • 商品コード 9781041045632

Full Description

Now in its second edition, this book provides a rigorous treatment of the foundations of differential and integral calculus. It proceeds gradually from an axiomatic characterization of the real number system to the study of differentiation and integration on m-dimensional surfaces. Proofs of theorems are given in detail, and many examples are provided to illustrate the concepts expressed in the theorems.

The book consists of three parts. Part I treats the calculus of functions of one variable. Traditional topics such as sequences, continuity, differentiability, Riemann integrability, numerical series, and the convergence of sequences and series of functions are covered. Optional sections on Stirling's formula, Riemann-Stieltjes integration, and other topics are also included.

The second part focuses on functions of several variables. It introduces the topological ideas (such as compact and connected sets) needed to describe analytical properties of multivariable functions. This part also discusses differentiability and integrability of multivariable functions, and it develops the theory of differential forms on surfaces in Rn.

Many proofs and explanations in the first edition have been revised, and details have been added to clarify the exposition. Part III contains appendices on set theory and linear algebra as well as solutions to some of the exercises are offered, whilst a full solutions manual contains complete solutions to all exercises for qualifying instructors.

Contents

Part 1: Functions of One Variable 1. The Real Number System 2. Numerical Sequences 3. Limits and Continuity on R 4. Differentiation on R 5. Riemann Integration on R 6. Numerical Infinite Series 7. Sequences and Series of Functions Part 2: Functions of Several Variables 8. Metric Spaces 9. Differentiation on Rn 10. Lebesgue Measure on Rn 11. Lebesgue Integration on Rn 12. Curves and Surfaces in Rn 13. Integration on Surfaces

最近チェックした商品