AI for Time Series : Volume 1: Unlocking Patterns with Deep Learning

個数:
  • 予約

AI for Time Series : Volume 1: Unlocking Patterns with Deep Learning

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 234 p.
  • 言語 ENG
  • 商品コード 9781041010319

Full Description

This book provides a thorough exploration of the latest innovations in AI for general time series analysis, distribution shift and foundation models. It offers an in-depth look at cutting-edge techniques and methodologies, using advance algorithms that are transforming time series analysis across industries. The authors highlight the use AI models, particularly those based on deep learning, to study the sequence of data points collected at successive points in time.

In the study of the use of AI for general time series analysis, readers are introduced to a recent important model like TimesNet, which has set new benchmarks for general time series analysis. TimesNet is a cutting-edge model for time series analysis, which transforms one-dimensional time series data into two-dimensional space to better capture temporal variations. This approach allows TimesNet to excel in various tasks such as short- and long-term forecasting, imputation, classification, and anomaly detection. The authors also discuss distribution shift in time series, with an important coverage on the use of AdaTime. This is a benchmarking suite for domain adaptation which addresses distribution shifts in time series data through unsupervised domain adaptation (UDA) In the last section, a significant focus is placed on the emergence of time series foundation models, particularly for forecasting. The book explores pioneering models like MOIRAI and Time-LLM, which are designed to offer universal forecasting capabilities across diverse time series tasks.

The book can be used as a supplementary reading for graduate students taking advanced topics/seminars on advanced deep learning and foundation models. It is also a useful reference for researchers and engineers working on time-series applications in finance, healthcare, energy, climate.

Contents

1 Introduction 2 Fedformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting 3 Fredf: Learning to Forecast in the Frequency Domain 4 PPGF: Probability Pattern-Guided Time Series Forecasting 5 Unlocking the Power of Lstm for Long Term Time Series Forecasting 6 Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification 7 Diffusion Language-Shapelets for Semi-Supervised Time-Series Classification 8 Graph-Aware Contrasting for Multivariate Time-Series Classification 9 Dcdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection 10 Multivariate Anomaly Detection with Self-Learning Graph Convolutional Networks 11 Saits: Self-Attention-Based Imputation for Time Series

最近チェックした商品