Machine Learning for Microbiome Statistics (Chapman & Hall/crc Biostatistics Series)

個数:
  • ポイントキャンペーン

Machine Learning for Microbiome Statistics (Chapman & Hall/crc Biostatistics Series)

  • ウェブストア価格 ¥40,920(本体¥37,200)
  • CRC Press(2026/02発売)
  • 外貨定価 US$ 200.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,860pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 656 p.
  • 言語 ENG
  • 商品コード 9781041005247
  • DDC分類 006.31

Full Description

Machine learning fundamentally learns from the past experiences (seen data) to make predictions about future (unseen data). Predictions in nature are often uncertain. Microbiome data have unique characteristics, including high-dimensionality, over-dispersion, sparsity and zero-inflation, and heterogeneity. Thus, machine learning involving microbiome data for predicting the outcome of phenotypes is even more uncertain than learning those data from other fields. Machine Learning for Microbiome Statistics poses many challenges for evaluating the prediction performance using appropriate metrics and independent data validation.

This unique book aims to address the challenges of machine learning statistics, emphasize the importance of performance valuation by appropriate metrics and independent data, and describe several important concepts of machine learning statistics, such as feature engineering and overfitting. It comprehensively reviews commonly used and newly developed machine learning models for microbiome research. Specifically, this book provides the step-by-step procedures to perform machine learning of microbiome data, including feature engineering, algorithm selection and optimization, performance evaluation and model testing. It comments the benefits and limitations of using machine learning for microbiome statistics and remarks on the advantages and disadvantages of each machine learning algorithm.

It will be an excellent reference book for students and academics in the field.

Presents a thorough overview of machine learning algorithms for microbiome statistics.
Performs step-by-step procedures to perform machine learning of microbiome data, using important supervised learning algorithms, including classical, ensemble learning and tree-based models.
Describes important concepts of machine learning, including bias and variance tradeoff, accuracy and precision, overfitting and underfitting, model complexity and interpretability, and feature engineering.
Investigates and applies various cross-validation techniques step-by-step.
Introduces confusion matrix and its derived measures. Comprehensively describes the properties of F1, Matthews' correlation coefficient (MCC), area under the receiver operating characteristic curve (AUC-ROC), and area under the precision-recall curve (AUC-PR), as well as discusses their advantages and disadvantages when using them for microbiome data.
Offers all related R codes and the datasets from the authors' first-hand microbiome research and publicly available data.

Contents

Preface Acknowledgements Chapter 1 Introduction to Machine Learning Chapter 2 Overview of Machine Learning in Microbiome Research Chapter 3 Accessing Model Accuracy and Goodness-of-Fit Tests for Normality Chapter 4 Overfitting and Underfitting Chapter 5 Assessing Model Accuracy Using Cross-Validation Chapter 6 Feature Engineering and Model Selection Chapter 7 Logistic Regression Chapter 8 Support Vector Machines Chapter 9 Classification Trees Chapter 10 Random Forest Chapter 11 The Evolution of Tree-Based Algorithms Chapter 12 Extreme Gradient Boosting (XGBoost) Chapter 13 Artificial Neural Networks and Deep Learning Chapter 14 Machine Learning Microbiome with SIAMCAT Chapter 15 Basic Performance Metrics for Machine Learning Models Chapter 16 Matthews Correlation Coefficient Chapter 17 Area under the Receiver Operating Characteristic Curve (AUC-ROC) Chapter 18 Area under the Precision-Recall Curve (AUC-PR) Chapter 19 Comparisons of Machine Learning Classification Models with Tidymodels

最近チェックした商品