Deep Learning Approaches in Intelligent Wireless Networking (Computational Methods for Industrial Applications)

個数:
  • 予約

Deep Learning Approaches in Intelligent Wireless Networking (Computational Methods for Industrial Applications)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781032998152

Full Description

This reference text covers deep learning-based communication frameworks for multiuser detection and sparse channel estimation and elaborates discussion on deep learning-based ultra-dense cell communication and sensor networks and ad-hoc communication. It further presents concepts and theories related to high-speed communication systems which are important in intelligent wireless communications.

Features:

Discusses machine learning-based network management strategy in wireless systems, and machine learning-inspired big data analytics frameworks for wireless network applications.
Presents high speed communication systems, deep learning for wireless networks, security aspects in wireless networks, and decision-making for wireless networks.
Highlights the importance of using deep reinforcement learning in intelligent wireless networks and deep reinforcement learning-based mobile data offloading frameworks.
Covers novel network architectures for distributed edge learning, and privacy issues in distributed edge learning.
Illustrates experimentation and deep learning-based simulations in networking systems, deep learning-based communication frameworks for multiuser detection, and sparse channel estimation.

It is written for senior undergraduate students, graduate students, and academic researchers in the fields of electrical engineering, electronics and communications engineering, computer science and engineering, and information technology.

Contents

Chapter 1. Deep Learning Transformations for Innovating Healthcare in the Health Sector. Chapter 2. Preliminary Study of 6G Networks Signifies A Revolutionary Change in Wireless Communication. Chapter 3. AI Applications, Healthcare, Agriculture, Defence & Medicine. Chapter 4. Artificial intelligence & Machine learning in healthcare: A systematic bibliometric analysis. Chapter 5. Deep Learning and Neural Network in the Stock Market. Chapter 6. Deep Learning Strategies for Advanced Wireless Communication. Chapter 7. A Machine Learning Based Model for Predicting Diabetes Leading to Retinopathy. Chapter 8. Intelligent Wireless Networks: Edge Computing, Sensors, Real-Time Computing, Security, Emerging Applications. Chapter 9. Empowering the Future of Education and Data Science: A Deep Learning Approach to Wireless Networks. Chapter 10. ML Algorithms Supervised/Unsupervised Learning, Application in Diverse Fields Including Networking. Chapter 11. ML in Wireless Networks: Management, Security, Analytics, Virtualization, Sensors, Real Cases

最近チェックした商品