AI and Data Engineering for Healthcare : Real-World Applications and Case Studies

個数:

AI and Data Engineering for Healthcare : Real-World Applications and Case Studies

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 412 p.
  • 言語 ENG
  • 商品コード 9781032988467
  • DDC分類 610.28563

Full Description

This book examines the transformative role of artificial intelligence (AI) and data engineering in revolutionizing the healthcare landscape. It presents cutting-edge developments ranging from predictive algorithms for disease diagnosis to large-scale data systems that enhance patient outcomes. By emphasizing the synergy between AI and data engineering, the book showcases practical applications in medical imaging, clinical diagnostics, and personalized treatment strategies.

It also thoughtfully examines ethical considerations, data privacy, and healthcare equity, particularly in underserved and rural populations.

Key Features:

Explores state-of-the-art technologies in healthcare, including image segmentation, feature extraction, feature selection, and classification
Provides real-world case studies, practical examples, and hands-on exercises for effective implementation of AI-driven solutions
Bridges disciplines across computer science, data engineering, and biomedical sciences to foster cross-domain collaboration
Highlights innovative research methodologies and their applications in AI-powered healthcare systems
Discusses the role of AI in improving healthcare access, delivery, and outcomes across diverse populations

This book is ideal for professionals, researchers, and policymakers seeking to understand and shape the future of healthcare through the lens of AI and data-driven innovation.

Contents

1. Artificial Intelligence in Mental Health: A Comprehensive Review 2. ABCNN: Attention-Based Convolutional Neural Networks for Arrhythmia Detection from ECG Data 3. Beyond the Black Box: Hybrid Deep Learning and Multi-Domain Fusion for Explainable EEG-Based Emotion Recognition 4. Economic Implications of Artificial Intelligence in Diabetes Management: Opportunities, Challenges, and Regional Prospects for Odisha 5. AI in Early Disease Detection and Prevention 6. AI in Medical Imaging: Revolutionizing Diagnostics through AI-Powered Services and Case Studies 7. Artificial Intelligence for Disease Prevention: From Diagnosis to Personalized Treatment 8. Deep Learning for Cardiovascular Risk Prediction: Unveiling Insights with RNNs and LSTMs 9. Predicting Protein-Protein Interactions: Machine Learning Models, Obstacles, and Advancements 10. The Role of Natural Language Processing in Analyzing Patient Records for Improved Clinical Decision-Making 11. AI-Enabled IADF Framework for MHD Diagnosis 12. AI for Remote Healthcare and Telemedicine 13. Diabetic Retinopathy Classification using Convolutional Neural Networks 14. Epidemiology and Transmission Dynamics of SARS-CoV-2 15. Harnessing Generative Adversarial Networks for Heart Disease Prediction: A Comprehensive Review

最近チェックした商品