Explainable AI for Earth Observation Data Analysis : Applications, Opportunities, and Challenges

個数:
  • 予約

Explainable AI for Earth Observation Data Analysis : Applications, Opportunities, and Challenges

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 320 p.
  • 言語 ENG
  • 商品コード 9781032980966

Full Description

The role of artificial intelligence is crucial in the domain of Earth Observation (EO) data analysis. Deep learning-based approaches have improved accuracy, but they have affected the reliability and transparency of EO data. It is critical to improve the explainability of EO data analysis algorithms and complex deep learning models to ensure the quality of spatial decisions. This book discusses the various advancements in Explainable AI and investigates their suitability for various EO data analyses offering best practices for implementing algorithms that facilitate big and efficient data processing. It lays the foundation of Explainable EO and helps readers build trustworthy, secure, and robust EO systems.

Features

Examines explainability of algorithms from the aspect of generalizability and reliability.
Reviews state-of-the-art explainability strategies related to the preprocessing algorithms.
Provides explanations for specific evaluation metrics of various EO data processing and preprocessing algorithms.
Discusses explainable ante-hoc and post-hoc approaches for EO data analysis.
Serves as a foundational reference for developing future EO data processing strategies.
Address the key challenges in making EO data processing algorithms interpretable and offers insights for the future of explainable EO data processing.

This book is intended for graduate students, researchers and academics in computer and data science, machine learning, and image processing, as well as professionals in geospatial data science using GIS and remote sensing in Earth and environmental sciences.

Contents

1. Towards Explainable Geospatial AI. 2. Explainable AI Methods: Challenges and Opportunities for EO Data Analysis. 3. Explainable EO Data Pre-processing: Challenges and Way Forward. 4. Explainable Feature Engineering for EO Data Analysis. 5. Towards Explainable Discriminative Models for EO Data Analysis. 6. Towards Explainable Generative Models for EO Data Analysis. 7. Earth Observation Data Analytics: Explainable AI (XAI) Strategies. 8. Towards Correlating Deep Learning Models with Physics-based Models. 9. Explainable Ante-hoc Approaches for EO Data Analysis: Opportunities and Challenges. 10. Explainable Post-hoc Approaches for EO Data Analysis: Opportunities and Challenges. 11. Online Learning Strategies for Explainability. 12. Explainability based Evaluation Metrics. 13. Benchmark Datasets for EO Data Explainability. 14. Applications and Case Studies of Explainable EO Data Analysis. 15. Future Trends in Explainable AI for Geospatial Applications.

最近チェックした商品