Federated Learning for Healthcare : Applications with Case Studies

個数:
  • 予約

Federated Learning for Healthcare : Applications with Case Studies

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 296 p.
  • 言語 ENG
  • 商品コード 9781032978109

Full Description

The book offers an in-depth exploration of federated learning and its transformative impact on the healthcare industry. It begins by introducing the foundational concepts of federated learning, including its methods and applications within various healthcare domains. It explores how federated learning allows for model training using decentralised data, such as patient records, medical imaging, and wearable sensor data, without centralising sensitive information. This approach ensures patient privacy and addresses critical challenges in healthcare data management.

• A detailed overview of federated learning, its principles, and its relevance to the healthcare sector.

• Insights into how federated learning enhances clinical decision-making, disease prediction, diagnosis, and personalised treatment through decentralised data sources.

• Examination of issues such as communication overhead, model heterogeneity, and data distribution imbalance, with strategies to overcome these challenges.

• Practical examples of successful federated learning implementations in healthcare demonstrate its impact on patient care and operational efficiency.

• Discussions on maintaining data privacy, ensuring compliance with regulations, and addressing ethical concerns.

This book is for researchers, healthcare professionals, data scientists, and policymakers interested in leveraging federated learning to enhance healthcare.

Contents

Chapter 1 Framework of Federated Learning and Implementation Through Internet of Things Chapter 2 Federated Learning for Internet of Things Chapter 3 Enhancing Federated Learning in Healthcare using Adaptive Genetic Model Aggregation Chapter 4 Energy Efficiency Iot Devices in Healthcare Field Using Federated
Learning Chapter 5 Artificial Intelligence in Mental Health: Innovation, Ethics, and Privacy via Federated Learning Chapter 6 Adaptive Energy Management in Healthcare IoT Devices Using Federated Intelligence Chapter 7 Artificial Intelligence Based Federated Learning in Healthcare Chapter 8 Federated Learning for Diabetic Retinopathy: Enhancing Detection with Data Privacy Chapter 9 Federated Learning Framework For Motif Structure Prediction Chapter 10 Cyber Threat Detection in IoT-Enabled Edge Computing Using Optimized Federated Deep Learning Chapter 11 Optimized Migraine Detection in Healthcare: Exploring Random
Forest and XGBoost with Prospects for Federated Learning Chapter 12 Unlocking the Knowledge of Patient Similarities in Chronic Kidney
Disease CKD Using Machine Learning with Prospects of Federal Learning Chapter 13 Dynamic Pricing for Revenue Management in Health and Hospitality
Industry with Federated Learning Chapter 14 Federated Learning for Real-Time Disease Prediction: A Scalable Framework for Personalized Healthcare in Internet of Things enabled Environment

最近チェックした商品