Data Clustering with Python : From Theory to Implementation (Chapman & Hall/crc the Python Series)

個数:
  • 予約

Data Clustering with Python : From Theory to Implementation (Chapman & Hall/crc the Python Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781032971568

Full Description

Data clustering, an interdisciplinary field with diverse applications, has gained increasing popularity since its origins in the 1950s. Over the past six decades, researchers from various fields have proposed numerous clustering algorithms. In 2011, I wrote a book on implementing clustering algorithms in C++ using object-oriented programming. While C++ offers efficiency, its steep learning curve makes it less ideal for rapid prototyping. Since then, Python has surged in popularity, becoming the most widely used programming language since 2022. Its simplicity and extensive scientific libraries make it an excellent choice for implementing clustering algorithms.

Features:

· Introduction to Python programming fundamentals

· Overview of key concepts in data clustering

· Implementation of popular clustering algorithms in Python

· Practical examples of applying clustering algorithms to datasets

· Access to associated Python code on GitHub

This book extends my previous work by implementing clustering algorithms in Python. Unlike the object-oriented approach in C++, this book uses a procedural programming style, as Python allows many clustering algorithms to be implemented concisely. The book is divided into two parts: the first introduces Python and key libraries like NumPy, Pandas, and Matplotlib, while the second covers clustering algorithms, including hierarchical and partitional methods. Each chapter includes theoretical explanations, Python implementations, and practical examples, with comparisons to scikit-learn where applicable.

This book is ideal for anyone interested in clustering algorithms, with no prior Python experience required. The complete source code is available at: https://github.com/ganml/dcpython.

Contents

1. Python Programming 101. 2. The NumPy Library. 3. The Pandas Library. 4. The Matplotlib Library. 5. Introduction to Data Clustering. 6. Agglomerative Hierarchical Algorithms. 7. DIANA. 8. The k-means Algorithm. 9. The c-means Algorithm. 10. The k-prototypes Algorithm. 11. The Genetic k-modes Algorithm. 12. The FSC Algorithm. 13. The Gaussian Mixture Algorithm. 14 The KMTD Algorithm. 15. The Probability Propagation Algorithm. 16. A Spectral Clustering Algorithm. 17. A Mean-Shift Algorithm.

最近チェックした商品