Feature Selection and Feature Extraction on Omics Data

個数:
  • 予約
  • ポイントキャンペーン

Feature Selection and Feature Extraction on Omics Data

  • ウェブストア価格 ¥32,313(本体¥29,376)
  • Chapman & Hall/CRC(2026/03発売)
  • 外貨定価 US$ 150.00
  • 読書週間 ポイント2倍キャンペーン 対象商品(~11/9)
  • ポイント 586pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 312 p.
  • 言語 ENG
  • 商品コード 9781032967677

Full Description

In today's data-driven world, biology and medicine are being transformed by the power of big data. Making sense of large, complicated biological datasets is a crucial problem that underlies every medical advancement and gene discovery. The book Advanced Feature Selection and Feature Extraction Techniques for Omics Data Analysis provides insight into this innovative area where biological science and computational science collide. This book, which is written in an approachable manner, explains the methods researchers employ to sort through vast amounts of multi-omics data to find insights that may result in better treatments, early disease diagnosis, and a greater comprehension of life at the molecular level. This volume provides a unique look at the technologies influencing the future of biological discovery and customized medicine, making it the perfect choice for anyone interested in learning more about how AI and data science are transforming biology and health.

This collection explores cutting-edge feature selection and extraction methods across a broad range of omics data formats, such as metagenomics, genomics, transcriptomics, epigenomics, and datasets etc. Readers will learn how these techniques can be used to improve disease classification, find promising biomarkers, uncover significant biological patterns, and aid in early diagnosis. The chapters discuss techniques designed to regulate sparsity, minimize dimensionality, and preserve biological interpretability while fusing fundamental ideas with practical applications. Case studies and real-world applications show how these methods enhance computational models' performance in tasks like disease prediction and gene identification. This book is a great resource whether you're new to omics data analysis or looking to improve your current workflows using sophisticated feature engineering techniques. It connects theory and application with contributions from subject matter experts to assist readers in converting unprocessed data into biologically significant insights, making it an essential resource in contemporary computational biology and precision medicine.

This book offers a comprehensive exploration of cutting-edge methodologies designed to address the complexities of high-dimensional biological datasets. This book serves as a practical and theoretical guide for researchers, data scientists, and students working at the intersection of bioinformatics and machine learning.

This book is a comprehensive and application-focused approach to one of the most pressing challenges in modern bioinformatics: making sense of high-dimensional omics data. While many resources touch on machine learning or biological datasets in isolation, this book bridges the two, offering a unified, practical guide that combines theoretical depth with real-world implementation across diverse omics domains—including genomics, metagenomics, transcriptomics, and epigenomics data.

Contents

Table of Contents

Chapter 1: Machine learning and Statistical based Feature Selection and Extraction approach for omics data
Kamlesh Kumar Pandey, Abhay Mishra, Gaurav Jain

Chapter 2: Advanced Feature Selection and Extraction Techniques for Omics Data Analysis: Applications in Multi-Omics Integration
M. M. Mohamed Mufassirin, A. Alan Steve Amath

Chapter 3: Role of Bioinformatics and Feature Selection Approaches in Analyzing Metagenomics Data
Anita Kachari, Deepranjan Pathak

Chapter 4: Feature Extraction and Selection Methods and Bioinformatics on Omics Data to Identify Signatures for Schizophrenia Mental Health Disorder
Pinju Saikia, Karan Mech

Chapter 5: Efficient Gene Selection for Breast Cancer Classification Using Brownian Motion Search Algorithm and Support Vector Machine
Abrar Yaqoob, R. Vijaya Lakshmi, Navneet kumar verma, GVV Jagannadha Rao, Rabia Musheer Aziz, Tejaswini Pradhan, Guimin Qin

Chapter 6: Feature Extraction and selection methods and Bioinformatics approach on Omics data to identify molecular signatures for specific diseases
Muskan Syed, Anushka Gupta, Priyanka Narad, Abhishek Sengupta

Chapter 7: Feature extraction and selection methods outperform machine learning and deep learning techniques
Tuward Jade Dweh, Selorm Adablanu

Chapter 8: A Hybrid Feature Gene Selection Approach by Integrating Variance Filter, Extremely Randomized Tree, and Cuckoo Search Algorithm for Cancer Classification
Abrar Yaqoob, R. Vijaya Lakshmi, Navneet kumar verma, GVV Jagannadha Rao, Rabia Musheer Aziz, Tejaswini Pradhan, Ruifeng Hu

Chapter 9: Complexity to Clarity: Feature Selection and Extraction in Plant and Microbial From Omics Research
Dola Mukherjee

Chapter 10: Analysis of Skin Diseases Using Deep Learning Techniques
Atikul Islam, Kalyani Mali, Mohit Kumar halder, Suvobrata Sarkar

最近チェックした商品