Understanding Structural Equation Models : Models of Relationships between Variables (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

個数:
  • 予約

Understanding Structural Equation Models : Models of Relationships between Variables (Chapman & Hall/crc Statistics in the Social and Behavioral Sciences)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p.
  • 言語 ENG
  • 商品コード 9781032962429

Full Description

The field of structural equation models (SEMs) is rapidly expanding. A researcher who wants to select and apply SEMs to their data faces several challenges: 1) they can often become extremely complex, with many parameters to estimate. Small samples or those with relatively few variables often cannot support this complexity reliably, leading to under-identified models, poor power, or unstable estimates. 2) Researchers must choose an appropriate measurement model, and these choices are not often well-understood in advance. 3) No single "correct" SEM exists although "better" ones do and the existence of competing plausible alternatives is often overlooked, and 4) Critical examination of model assumptions involving the linearity of parameters and existence of influential or outlying observations is often overlooked. This book provides an overview of SEM as a flexible, skeptical, and iterative scientific process.

Key Features

Emphasis on multiverse analysis, right-sizing statistical models to data, and the generation of plausible skeptical alternatives
Robust assumption checking (loess regression, regression and SEM diagnostics)
Detailed, visual coverage of a variety of path diagrams, their links to matrix-based specifications and data exploration using heat-map visualization and tests of dimensionality
A variety of SEMs including mediational models, psychometrics (e.g., parallel, tau-equivalent, congeneric measurement), growth curve models, exploratory factor analysis, multi-group, categorical, and exploratory structural equation modelling

This text is designed for graduate students, early-career researchers, and advanced undergraduates who wish to move beyond plug-and-play SEMs to a deeper, more philosophical and data-conscious understanding. Its careful balance of theory, worked examples, and emphasis on skepticism, will help its audience build confidence in using SEMs flexibly and responsibly for a broad range of social and behavioral science research.

Contents

1: Introduction. 2: Data Representation. 3: Path Diagrams. 4: Three-Variable Models. 5: Assumption Checking. 6: Vector Algebra. 7: Reliability Models. 8: Confirmatory Factor Analysis. 9: Model Fit and Comparison. 10: Measurement Models. 11: Matrix Notation Models. 12: Parsimonious Factor Models. 13: Change and Growth. 14: Multiple Groups. 15: Exploratory Factor Analysis. 16: Factor Rotation. 17: SEM Assumption Checking. 18: Categorical Variable Dependent Variables. 19: Postscript.

最近チェックした商品