Spatial Data Analysis in Ecology and Agriculture Using R (3RD)

個数:
  • 予約

Spatial Data Analysis in Ecology and Agriculture Using R (3RD)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 520 p.
  • 言語 ENG
  • 商品コード 9781032935355

Full Description

Since the publication of the second edition of Richard Plant's bestselling textbook 'Spatial Data Analysis in Ecology and Agriculture Using R', the methodology of spatial data analysis and the suite of R tools for carrying out this analysis have evolved dramatically. This third edition thus explores both the leading software tools for the analysis of vector and raster data; the first based on sf and associated libraries, the second based on the terra package as it has evolved out of the earlier raster package.

Further, within the methodology of spatial data analysis, the set of methods available has significantly expanded. This book adds several of the most popular and useful, including machine learning methods in spatial data analysis, the use of simulation methods in spatial data analysis, and a new chapter on the analysis of remotely sensed data. These methods are critically compared in the context of addressing the particular goals of the research project.

The book's practical coverage of spatial statistics, real-world examples and user-friendly approach make this an essential textbook for ecology and agriculture graduate students. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions.

Additional material to accompany the book, including a review of mathematical concepts, the full data sets, and a brief introduction to geographic coordinate systems, can be accessed via the Instructor Resources link on www.routledge.com.

Contents

1. Working with Spatial Data 2. The R Programming Environment 3. Statistical Properties of Spatially Autocorrelated Data 4. Measures of Spatial Autocorrelation 5. Sampling and Data Collection 6. Acquisition and Analysis of Remotely Sensed Data 7. Preparing Spatial Data for Analysis 8. Preliminary Exploration of Spatial Data 9. Non-Spatial Methods: Linear and Additive Models 10. Variance Estimation, the Effective Sample Size, and the Bootstrap 11. Measures of Bivariate Association between Two Spatial Variables 12. Machine Learning Methods I 13. Machine Learning Methods II: Supervised Classification Methods 14. The Mixed Model 15. Regression Models for Spatially Autocorrelated Data 16. Assembling Conclusions. Appendix A. Review of Mathematical Concepts

最近チェックした商品