Future of Learning with Large Language Models : Applications and Research in Education

個数:
  • 予約

Future of Learning with Large Language Models : Applications and Research in Education

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 252 p.
  • 言語 ENG
  • 商品コード 9781032934327

Full Description

The book covers theoretical foundations on how LLMs can enhance learning, cognitive reinforcement, improving learning efficiency, and personalization in learning, applications across the curriculum, teacher training and support for LLM integration, using in assessment and evaluation, and measuring the impact and affordances of LLMs. It acknowledges the challenges that come with integrating LLMs into education and will address the responsible development and deployment strategies to ensure that the models become powerful tools for good in the hands of educators. It explores potential research directions, such as the development of domain-specific models, and the creation of ethical frameworks for LLM use in education. As education enters an era of AI-enablement, this visionary book equips teachers, administrators, technologists, and policymakers with an authoritative guide to harnessing the power of large language models. Readers will discover how these advanced systems can expand access to quality education, tailor learning experiences, and nurture the innovators and critical thinkers of tomorrow, and glimpse into the future of learning and education with LLMs.

Contents

PART I: FOUNDATIONS, FRAMEWORKS, AND ETHICAL CONSIDERATIONS. Responsible, Ethical, and Effective Use of LLMs in Higher Education. Prompting Learning: The EPICC Framework for Effective Prompt Engineering in Education. Improving Large Foundation Models in Education for Multi-cultural Understanding. Engagement Dynamics in AI-Augmented Classrooms: Factors and Evolution. Engagement Diversity in AI-Enhanced Learning: Demographic and Disciplinary Perspectives. PART II: PRACTICAL TOOLS AND APPLICATIONS FOR EDUCATORS. vTA: How an Instructor Leverages Large Language Models for Superior Student Learning. A Step Towards Adaptive Online Learning: Exploring the Role of GPT as Virtual Teaching Assistants in Online Education. Leverage LLMs on Knowledge Tagging for Math Questions in Education. The Educator's Co-Pilot: Leveraging Generative AI and OERs for Learning Path Design. PART III: STUDENT-CENTERED LEARNING AND EMERGING TRENDS WITH AI. CHAPTER 10: Examining Graduate Students' Experiences in Using Generative AI for Academic Writing: Insights from Cambodian Higher Education. Generating Feedback for Programming Exercises with OpenAI's o1-preview. From Algorithms to Classrooms: The Future of Education with Large Language Models.

最近チェックした商品