Combinatorics of Spreads and Parallelisms (Chapman & Hall Pure and Applied Mathematics)

個数:

Combinatorics of Spreads and Parallelisms (Chapman & Hall Pure and Applied Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 674 p.
  • 言語 ENG
  • 商品コード 9781032917849
  • DDC分類 512.52

Full Description

Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces.

The book describes general partitions of finite and infinite vector spaces, including Sperner spaces, focal-spreads, and their associated geometries. Since retraction groups provide quasi-subgeometry and subgeometry partitions of projective spaces, the author thoroughly discusses subgeometry partitions and their construction methods. He also features focal-spreads as partitions of vector spaces by subspaces. In addition to presenting many new examples of finite and infinite parallelisms, the book shows that doubly transitive or transitive t-parallelisms cannot exist unless the parallelism is a line parallelism.

Along with the author's other three books (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes), this text forms a solid, comprehensive account of the complete theory of the geometries that are connected with translation planes in intricate ways. It explores how to construct interesting parallelisms and how general spreads of vector spaces are used to study and construct subgeometry partitions of projective spaces.

Contents

Partitions of Vector Spaces. Subgeometry Partitions. Subplane Covered Nets and Baer Groups. Flocks and Related Geometries. Derivable Geometries. Constructions of Parallelisms. Parallelism-Inducing Groups. Coset Switching. Transitivity. Appendices. Bibliography. Index.

最近チェックした商品